
MATHEMATICAL DERIVATIONS OF THE 
FOUCAULT PENDULUM 

 
Picture 15. Image  
A Wheatstone pendulum setup with the attachment points aligned with the central axis of rotation. 

I will start with a derivation for the Wheatstone pendulum setup that is 
depicted in image 15. That setup is effectively a 2-dimensional case; all forces 
that are involved act parallel to the plane of the equator; all motion is in a 
plane that is parallel to the equator. At the very end of the mathematical 
discussion I will add the modification that generalizes the result to cases 
where the suspension points are not aligned with the central axis of rotation. 

The equation of motion 

As discussed in the section Decomposition in vector components the 
mathematics of the equation of motion is simplified by representing the force 
exerted upon the pendulum bob as a combination of two forces: 

· Centripetal force that sustains the rotation  
· Restoring force that sustains the vibration 

Both can be treated as a harmonic force. 

The centripetal force that sustains rotation with constant angular velocity Ω, 
for a coordinate system with the zero point at the central axis, is given by: 

http://www.cleonis.nl/physics/phys256/foucault_pendulum.php#decomposition


 

The restoring force acts towards the equilibrium point (plumb line direction) of 
the pendulum. The coordinate system can be chosen in such a way that the 
central axis and the equilibrium point are both on the y-axis. Let the y-
coordinate of the equilibrium point be called ye. Let the frequency of the 
pendulum swing be called ψ. 

 

The centrifugal term and the Coriolis term 

I assume that the reader is at ease with the centrifugal term and the Coriolis 
term. The necessary information is present in the articles Rotational-
vibrational coupling and Oceanography: inertial oscillations and in the 
following interactive animation Coriolis effect. In the rotational-vibrational 
coupling article I present a derivation of the Coriolis term (the centrifugal term 
is trivial), and in the inertial oscillation article I show how things work out for 
terrestrial effects. 

To help recognize the notation: in the following system of equations (which is 
for motion relative to a coordinate system that rotates with angular velocity Ω) 
the term that is proportional to x and y is the centrifugal term. The Coriolis 
term is proportional to dx/dt and dy/dt respectively. 

The acceleration that is associated with the Coriolis effect is perpendicular to 
the velocity. If you have a vector dx/dy, then the vector perpendicular to that is 
-dy/dx; it's the negative, and inverted. In the system of motion equations (for x-
direction and y-direction) you see that the factor 2Ωdy/dt is in the equation for 
acceleration in the x-direction, and vice versa. 

 

http://www.cleonis.nl/physics/phys256/coupling.php
http://www.cleonis.nl/physics/phys256/coupling.php
http://www.cleonis.nl/physics/phys256/inertial_oscillations.php
http://www.cleonis.nl/physics/graphlets/coriolis_effect.php


The full equation 

No factor m  
Let me explain first why I have omitted the factor 'm' for the mass in the 
equation of motion below. The restoring force arises from elasticity. If the bob 
is replaced with a heavier bob then the elastic material stretches some more 
before settling into an equilibrium state. The required force is proportional to 
m, and the setup simply self-adjusts to provide the required force. 

The full equation of motion for motion with respect to a rotating coordinate 
system has four factors: the two components of the force plus the centrifugal 
term and the Coriolis term. 

 

It's assured that 'centrifugal' and 'centripetal' drop away against each other 
because the system is self-adjusting: if the angular velocity of the system 
would increase then the springs deform a little more until the point is reached 
where the springs once more provide the required amount of centripetal force. 

Letting the centrifugal term and the expression for the centripetal force drop 
away against each other: 

 

This equation of motion describes the effects of the centripetal force on the 
motion pattern. 

The above expression can be simplified further by shifting the zero point of the 
coordinate system. The Coriolis term only contains velocity with respect to the 



rotating system, so it is independent of where the zero point of the coordinate 
system is positioned. In the following equations x and y are not the distance to 
the central axis but the distance to the center point of the vibration. 

 

As a reminder: the above equations apply for only a single case, the case 
when the suspension of the pendulum is aligned with the central axis of 
rotation, as depicted in image 15. 

This system of equations is the same as the equations of motion for two 
coupled oscillators. Here the oscillations are vibration in x-direction and 
vibration in y-direction. The Coriolis term describes that acceleration in x-
direction is proportional to velocity in y-direction, and that acceleration in y-
direction is proportional to velocity in x-direction. In other words: the Coriolis 
term describes the transfer of the vibration direction. 

Weakened coupling 

 
Picture 16. Image  
In the case of an angle of 60 degrees with the central axis of rotation: If the two extremal points of 
the swing are a distance of L apart, then the motion towards and away from the central axis covers a 
distance of 1/2 L 

When the attachment points are not aligned with the central axis of rotation 
the coupling between the rotation and the vibration is weakened. Less motion 



towards and away from the central axis of rotation means the centripetal force 
will be doing less work. 

 

 
Picture 17. Image  
The shape of the pendulum bob's trajectory. 

Obtaining an analytic solution to that equation of motion is in thesecond 
Foucault pendulum article 

Image 17 has been created by plotting the analytic solution to the above 
equation of motion. It represents the case where the ratio of ψ to Ω is 11 to 1 
(Usually the ratio of ψ to Ω is in the order of thousands to one). The image 
depicts the case of releasing the bob in such a way that on release it has no 
velocity with respect to the rotating system. 

What the equations describe 

Remarkably, the equations describe that the shape of the trajectory of the 
Foucault pendulum is exactly the same on all latitudes, the latitude of 
deployment affects only the rate of precession. That means that just from the 
shape of the trajectory you will not be able to observe the magnitude of the 
Earth's rotation rate. For instance, if you observe that it takes 32 hours for the 
pendulum to complete a precession cycle then maybe the Earth takes 32 
hours to rotate, or maybe you are on a latitude where the precession takes 32 
hours, with the Earth rotating at some unknown faster rate. So if you limit 

http://www.cleonis.nl/physics/phys256/foucault_pendulum_2.php
http://www.cleonis.nl/physics/phys256/foucault_pendulum_2.php


yourself rigidly to using data from the pendulum motion only you cannot 
observe the Earths rotation rate. 

The similarity of the shape on every latitude is quite surprising, for in the case 
of a polar pendulum and in the case of a latitudinal pendulum the mechanism 
that is involved is entirely different.  
In the case of a polar pendulum the only physics taking place is the swing of 
the pendulum, the Earth merely rotates underneath the pendulum, without 
affecting it; the "precession" of a polar pendulum isapparent precession. On 
the other hand, in the case of a latitudinal pendulum the pendulum setup as a 
whole is circumnavigating the Earth's axis and consequently the vibration is 
affected: there is a coupling of latitudinal and longitudinal vibration. When the 
coupling is 100% as in the setup depicted in animation 10 the vibration retains 
the same orientation with respect to inertial space. When the coupling is less 
then 100%, as in the case of a Foucault setup somewhere between the poles 
and the equator there is an actual precession of the pendulum swing. 

 
 

Overview: the influence of the centripetal force. 
The reason that the centripetal force is crucial is the fact that the direction of 
the centripetal force is not constant. 

For contrast: compare with the case of a displacing force that is constant in 
direction. Take for instance the following setup: a pendulum suspended in a 
train carriage that accelerates uniformly in a straight line. 
Thatuniform acceleration can be incorporated as a tilt of the vertical (just like a 
plumb line in a uniformly accelerating train carriage will be tilted accordingly); 
it will not affect the direction of the pendulum swing. 

Cumulative 

In the case of a Foucault pendulum the centripetal force does affect the 
direction of the plane of swing. While the centripetal force's change of 
direction during each separate swing is minute, it is nonetheless the 
determining factor because the effect is cumulative. 
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