MATHEMATICAL DERIVATIONS OF THE
FOUCAULT PENDULUM

Picture 15. Image
A Wheatstone pendulum setup with the attachment points aligned with the central axis of rotation.

| will start with a derivation for the Wheatstone pendulum setup that is
depicted in image 15. That setup is effectively a 2-dimensional case; all forces
that are involved act parallel to the plane of the equator; all motion is in a
plane that is parallel to the equator. At the very end of the mathematical
discussion | will add the modification that generalizes the result to cases
where the suspension points are not aligned with the central axis of rotation.

The equation of motion

As discussed in the section Decomposition in vector components the
mathematics of the equation of motion is simplified by representing the force
exerted upon the pendulum bob as a combination of two forces:

- Centripetal force that sustains the rotation
- Restoring force that sustains the vibration

Both can be treated as a harmonic force.

The centripetal force that sustains rotation with constant angular velocity Q,
for a coordinate system with the zero point at the central axis, is given by:
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The restoring force acts towards the equilibrium point (plumb line direction) of
the pendulum. The coordinate system can be chosen in such a way that the
central axis and the equilibrium point are both on the y-axis. Let the y-
coordinate of the equilibrium point be called y.. Let the frequency of the
pendulum swing be called y.
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The centrifugal term and the Coriolis term

| assume that the reader is at ease with the centrifugal term and the Coriolis
term. The necessary information is present in the articles Rotational-
vibrational coupling and Oceanography: inertial oscillations and in the
following interactive animation Coriolis effect. In the rotational-vibrational
coupling article | present a derivation of the Coriolis term (the centrifugal term
Is trivial), and in the inertial oscillation article | show how things work out for
terrestrial effects.

To help recognize the notation: in the following system of equations (which is
for motion relative to a coordinate system that rotates with angular velocity Q)
the term that is proportional to x and y is the centrifugal term. The Coriolis
term is proportional to dx/dt and dy/dt respectively.

The acceleration that is associated with the Coriolis effect is perpendicular to
the velocity. If you have a vector dx/dy, then the vector perpendicular to that is
-dy/dx; it's the negative, and inverted. In the system of motion equations (for x-
direction and y-direction) you see that the factor 2Qdy/dt is in the equation for
acceleration in the x-direction, and vice versa.
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The full equation

No factor m

Let me explain first why | have omitted the factor 'm’' for the mass in the
equation of motion below. The restoring force arises from elasticity. If the bob
Is replaced with a heavier bob then the elastic material stretches some more
before settling into an equilibrium state. The required force is proportional to
m, and the setup simply self-adjusts to provide the required force.

The full equation of motion for motion with respect to a rotating coordinate
system has four factors: the two components of the force plus the centrifugal
term and the Coriolis term.
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It's assured that 'centrifugal’ and 'centripetal’ drop away against each other
because the system is self-adjusting: if the angular velocity of the system
would increase then the springs deform a little more until the point is reached
where the springs once more provide the required amount of centripetal force.

Letting the centrifugal term and the expression for the centripetal force drop
away against each other:
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This equation of motion describes the effects of the centripetal force on the
motion pattern.

The above expression can be simplified further by shifting the zero point of the
coordinate system. The Coriolis term only contains velocity with respect to the



rotating system, so it is independent of where the zero point of the coordinate
system is positioned. In the following equations x and y are not the distance to
the central axis but the distance to the center point of the vibration.
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As a reminder: the above equations apply for only a single case, the case
when the suspension of the pendulum is aligned with the central axis of
rotation, as depicted in image 15.

This system of equations is the same as the equations of motion for two
coupled oscillators. Here the oscillations are vibration in x-direction and
vibration in y-direction. The Coriolis term describes that acceleration in x-
direction is proportional to velocity in y-direction, and that acceleration in y-
direction is proportional to velocity in x-direction. In other words: the Coriolis
term describes the transfer of the vibration direction.

Weakened coupling
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Picture 16. Image

In the case of an angle of 60 degrees with the central axis of rotation: If the two extremal points of
the swing are a distance of L apart, then the motion towards and away from the central axis covers a
distance of 1/2 L

When the attachment points are not aligned with the central axis of rotation
the coupling between the rotation and the vibration is weakened. Less motion



towards and away from the central axis of rotation means the centripetal force
will be doing less work.
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Picture 17. Image
The shape of the pendulum bob's trajectory.

Obtaining an analytic solution to that equation of motion is in thesecond
Foucault pendulum article

Image 17 has been created by plotting the analytic solution to the above
equation of motion. It represents the case where the ratio of gy to Q is 11 to 1
(Usually the ratio of wp to Q is in the order of thousands to one). The image
depicts the case of releasing the bob in such a way that on release it has no
velocity with respect to the rotating system.

What the equations describe

Remarkably, the equations describe that the shape of the trajectory of the
Foucault pendulum is exactly the same on all latitudes, the latitude of
deployment affects only the rate of precession. That means that just from the
shape of the trajectory you will not be able to observe the magnitude of the
Earth's rotation rate. For instance, if you observe that it takes 32 hours for the
pendulum to complete a precession cycle then maybe the Earth takes 32
hours to rotate, or maybe you are on a latitude where the precession takes 32
hours, with the Earth rotating at some unknown faster rate. So if you limit
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yourself rigidly to using data from the pendulum motion only you cannot
observe the Earths rotation rate.

The similarity of the shape on every latitude is quite surprising, for in the case
of a polar pendulum and in the case of a latitudinal pendulum the mechanism
that is involved is entirely different.

In the case of a polar pendulum the only physics taking place is the swing of
the pendulum, the Earth merely rotates underneath the pendulum, without
affecting it; the "precession” of a polar pendulum isapparent precession. On
the other hand, in the case of a latitudinal pendulum the pendulum setup as a
whole is circumnavigating the Earth's axis and consequently the vibration is
affected: there is a coupling of latitudinal and longitudinal vibration. When the
coupling is 100% as in the setup depicted in animation 10 the vibration retains
the same orientation with respect to inertial space. When the coupling is less
then 100%, as in the case of a Foucault setup somewhere between the poles
and the equator there is an actual precession of the pendulum swing.

Overview: the influence of the centripetal force.

The reason that the centripetal force is crucial is the fact that the direction of
the centripetal force is not constant.

For contrast: compare with the case of a displacing force that is constant in
direction. Take for instance the following setup: a pendulum suspended in a
train carriage that accelerates uniformly in a straight line.

Thatuniform acceleration can be incorporated as a tilt of the vertical (just like a
plumb line in a uniformly accelerating train carriage will be tilted accordingly);
it will not affect the direction of the pendulum swing.

Cumulative

In the case of a Foucault pendulum the centripetal force does affect the
direction of the plane of swing. While the centripetal force's change of
direction during each separate swing is minute, it is nonetheless the
determining factor because the effect is cumulative.

Source : http://www.cleonis.nl/physics/phys256/foucault_pendulum.php
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