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Genetic Algorithm Based Optimal Control for
a 6-DOF Non Redundant Stewart Manipulator

A. Omran, G. El-Bayiumi, M. Bayoumi, and A. Kassem

Abstract—Applicability of tuning the controller gains for
Stewart manipulator using genetic algorithm as an efficient search
technique is investigated. Kinematics and dynamics models were
introduced in detail for simulation purpose. A PD task space control
scheme was used. For demonstrating technique feasibility, a Stewart
manipulator numerical-model was built. A genetic algorithm was
then employed to search for optimal controller gains. The controller
was tested onsite a generic circular mission. The simulation results
show that the technique is highly convergent with superior
performance operating for different payloads.

Keywords—Stewart Kinematics, Stewart Dynamics, Task Space
Control, Genetic Algorithm.

1. INTRODUCTION

LIGHT simulators imitate the physical feeling of piloting

an aircraft by providing graphical windows, sound, and
motion platform. One of the most popular flight simulator
platforms is Stewart manipulator, where a moving plate is
connected to a base plate by six legs. Each leg has an upper
part sliding inside a lower part simulating the three
translational motions (surge, sway, and heave) and the three
rotational motions (pitch, roll, and yaw) as shown in Fig. 1.

Line of loint fy

Fig. 1 Stewart Manipulator
Two schemes are commonly used in control of the Stewart
manipulator: task space control and joint space control. The
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task space control scheme has been investigated by [1-2]. In
this scheme, the frame work is multi-inputs multi-outputs
(MIMO). Thus the forward kinematics model is imbedded in
the control loop to estimate the task space displacements (X)
from the measured joint displacements (¢) as shown in Fig. 2.
The task space control is exacerbated by the fact that the
direct kinematics of Stewart manipulator has no closed form
solution. For example, Dietmaier [3] has addressed 40
possible solutions for the forward kinematics. A lot of studies
have tried to simplify the direct kinematics problem by
different approaches. Pratik [4], and Sadjadian [5-6] used the
neural network approach. The accuracy of this approach is
very sensitive to the structure of the neural network. For
example, Sadjadian [6] showed that changing the structure of
neural networks can lead to different accuracy levels in
forward kinematics modeling for the Stewart manipulator.
Ilian [7] presented a new closed-form solution of the problem
but it used three extra sensors. Liu [8-9] proposed a numerical
algorithm based on a fundamental geometric operation with
three nonlinear simultaneous algebraic equations, which is
impractical for the control process. All this literature
emphasizes the complexity of applying task space control
scheme.
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Fig. 2 Scheme of the task space control

On the other hand, the joint space scheme is developed by
the information of joint displacements only, since each leg of
the manipulator is controlled as a single-input single-output
(SISO) system. The error between the actual and desired joint
displacement is used as a feedback signal to the controller.
The inverse kinematics of the Stewart manipulator has a
closed form and it is easy to be implemented. In this way, the
sophisticated computations of the forward kinematics are
omitted from the control loop. This scheme has been widely
used by many research reports, especially for experimental
application. Pasquale [10] used a robust control scheme with
acceleration feedback. Li [11] designed a proportional gain
controller. Fang [12] implemented a fuzzy control. Su [13]
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proposed a new technique of robust auto disturbance rejection
controller (ADRC). However all these studies overlook the
manipulator dynamics, because the controller is designed
based on actuator model such as hydraulic system [11, 13], or
servo motors [10, 12], which restricts the ability of designing
a controller with high performance tracking.

The contribution of this paper is to show the merit of using
genetic algorithm in tuning the controller gains for Stewart
manipulator based on manipulator dynamics instead of
actuator dynamics as in the previous studies [10-13]. For
simplicity, a PD controller in joint space is considered. An
optimization problem is assigned seeking for minimum
settling time and minimum error when a step input is
considered as a reference input. The error is defined here as
the difference between the observed and the desired joint
displacements. This paper is organized as follows: in section
two, the description of inverse kinematics enables one to
determine the link lengths in terms of desired/specified upper
platform position and angular orientations. Section three
includes a discussion about the dynamics model. The use of a
genetic algorithm to search for controller gains is presented in
section four. Section five offers the results of the simulation
used to examine the proposed technique. Finally, section six is
the conclusion.

II. INVERSE KINEMATICS MODEL

There are two frames describing the motion of the moving
plate: an inertia frame (X, Y, Z) located at the center of the
base plate and a body frame (x3, yp, zp) located at the center of
the moving plate with the zz-axis pointing outward. The angle
between the local xp-axis of the moving plate and the line of
the joint J,; is denoted by f; as shown in Fig. 3.
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Fig. 3 Joint position on the moving plate
The position of the joint J,, in the plate body frame is
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In the same manner, an angle «; is defined between the inertia
X-axis and the line of the joint J;;. The position of the joint Jj;
in the inertia frame is defined as:

p=bt v z]
:[R,cos(oc,.) R, sin(ai) 0"

i=12,..6
@

The upper plate has a capability for 6-DOF motion (three
rotational motions and three translational motions). The
rotational motions of the plate are defined by Euler angles in
sequence 1-2-3. Thus the transformation from the body frame
(xg, ¥ zp) to the inertia frame (X, Y, Z) is given by the

Matrix Rpla,e :
CoC, 5,54C, —C,S, CpSyC, +5,S,
Rp/ate = CHSI// S(DSHS!// + C(DCU/ C$S9SW - S(/’C‘// (3)

-5, §,Cy C,Cy
where C refers to angle cosine and S refers to angle sine. The
angles y, 6, and ¢ are Euler angles. The absolute angular

velocity of the movable plate in body frame is given by

-S, 1 0 [y
b,=5,Cp 0 C |¢ &)
C,Cp 0 —S, |0

In addition to the rotation, one should consider the translation
I

vector T, as:
()
Toe =| ¥V (5)
z(t)+h

where 4 is the initial height of the upper plate’s center. The
trajectory of the upper plate’s center is defined by x(2), y(?),
and z(?). The position of the joint J,; in inertial frame (X, Y, Z)
is then calculated as:

P/ :[Xﬁ vy

ui ut

1
+T plate

B B
Zui:r- = RplatePJm (6)

The length vector of the i" leg L,( can then be computed from
(2) and (6) as:

I I pl 7
Li =P P, @

i=12,.6

By substituting from (3) and (5) into (6), and considering the
square value of vector Lf in (7), the relationship between the

joint space variables and task space variables can be
summarized as:
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=X*+Y*+Z7?
where

X =C,C, R, cos(B,)+(S,5,C, —C,S, R, sin(8,)

+ x(t)— R, cos(a,-) (®)
Y= S, R, cos(,)+ (5,555, +C,C, R, sin(8,)
+ y(t)~ R sin(a;)
Z ==S,R, cos(B; )+ S,CyR, sin(B,)+z(t)+
andi=1, 2, ..., 6. Based on (8), the inverse kinematics has a

closed form. On the other hand, it is “impossible” to develop
any closed form for the forward kinematics.

Each leg has three degrees of freedom: two rotational and
one translational motion. The leg can rotate around the
universal joint, while the upper part of the leg is sliding inside
the lower part by an actuating force F as shown in Fig. 4.
Thus a spherical joint is employed to connect the upper part of
each leg by the movable plate while the lower part is
connected to the base plate by a universal joint.
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Fig. 4 Leg mechanism of Stewart manipulator

The motion of the each leg is considered by two frames: a
leg fixed frame (Xjeg, Yiep, Zieo) located at the joint Jj; parallel to
the inertia frame and the leg body frame (x;;, yu;, z5) located at
the same point with x-axis pointing in upward. The rotation
sequence of the leg starts from rotating around Z;.-axis with
an angle /', followed by a rotation about the y,-axis with an
angle ¢. The rotational angle of the leg can be specified by the

position of the upper joint PJIM and the position of the lower

. . I
Joint P;  as
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where i =1,2,...,6. The transformation matrix R Leg, from
(cps Yoo, zpr) frame to (Xjee, Yieo, Zieg) frame is given as
C,Cr, =S S.Cr
RLeg, = CS,SF,- CF, Ss,-Sl"i (10)
=S, 0 C,

i

The angular velocity @; of the i leg with respect to the leg

body frame is defined by
-r sin(s)
@; = & (11
r cos(e)

1. DYNAMICSS MODEL

The dynamics model of Stewart manipulator has been
addressed by many methods such as the Lagrange equation [1,
11], Newton-Euler equation [13-14], and the principle of
virtual work [16-17]. Based on the results that have been
shown by Khalil [18], Newton-Euler method emerged as the
most effective way to model Stewart manipulator dynamics.
However this method has been highlighted by some common
errors in previous research reports. These errors were listed by
Shaowen [19], and corrected in the current research.

In Newton—Euler method, the dynamics model of Stewart
manipulator is described through 24 governing equations, six
equations for the movable plate, and the others for the legs.
For completeness, the dynamic equations will be list here.
More details of the derivation are given by many references
[13, 14, and 18]. Thus the moment equation around the
universal joint is

mul

m i x(-g+a, )+
+ X([Iu, ]+ [I,' ])Eo,-

where m; is the lower leg mass, m, is the upper leg mass,

. (12)

h, X(—§+5u[ )+(l1u[l+lll[ K
L; ><‘}7,. =0

[, ] is the “invariant” inertia matrix of the lower leg ,
[Z, ] is the “variant” inertia matrix [17] of the upper sliding

leg, g is the acceleration of the lower leg, a, is the

u

acceleration of the upper leg, is the gravitational

g
acceleration, @; is the angular velocity of the leg , @;is the

angular acceleration, Zi is the length of the whole prismatic
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leg, 7 is the position vector of the lower leg from universal

joint, Fuf is the position vector of the upper leg measured

from the universal joint, and ]’, is the reaction force between

the spherical joint and the upper plate. The reaction force ]71
is decomposed into three components in the leg’s body frame
as shown in Fig. 4. The force equation in x,~direction of the
sliding mechanism is given as

m, 7, \-g+a, )=F~f, (13)
The dynamics of the upper plate have three moment equations
and three force equations as

6
- _ - T -
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where i =1,2,...,6, m, is the mass of plate plus the external

payload, [/,] is the inertia matrix of the upper plate, a, is

(14

6 . pT .
iglrbi ><Rplm‘eRlegi fi

the acceleration for the upper plate’s center of mass, cﬁp

anda , are the angular velocity and acceleration of plate, and
Fbi the position vector from the center of plate to the joint J;.

Solving the dynamic equations of Stewart manipulator has
two models. The first model is the inverse dynamics
computing the equilibrium forces. The second model is the
forward dynamics building the simulation tool. The input of
the inverse dynamics is the desired trajectory of the movable
platform as a function of the time and the outputs are the
actuator forces. On the other hand, the inputs of the forward
dynamics models are the actuator forces applied at cylindrical
joints, and the outputs are the movable upper plate positions
and orientations. The algorithm of the inverse dynamics model
can be summarized in the following steps:

o Stepl: Specify the desired task space displacements as
[o@)), 6(1), w(t), x(®), y(1), z®)]" and their derivatives
with time.

Step2: Obtain the transformation matrix R, of the
moving plate from (3).

Step4: Obtain the angular velocity of the moving plate
o, from (4).

StepS: Use numerical differentiation to compute the
angular acceleration of the moving platea, .

Step6: Compute the positions of joints J,; and J;; from
(2) and (6).

Step7: Obtain the value of angles ¢ and /" for each leg
from (9).

Step8: Obtain the transformation matrix for each leg
Rjee from (10).

Step9: Use numerical differentiation to evaluate the
time derivatives of angles ¢ and I

Step10: Obtain the angular velocity @ of each leg
from (11).

76

Step11: Use numerical differentiation to compute the
angular acceleration a for each leg.

Step12: Solve (12) to compute £, and /. for each leg.

Step13: Solve (14) as a set of linear homogenous
equations in f;;

Step14: Calculate the actuating force F' from (13).

Sequentially, the forward dynamics model is developed in
reverse direction of the inverse kinematics algorithm.

IV. OPTIMIZATION PROCEDURE USING GA

Genetic algorithm is now considered as one of the most
popular optimization and search techniques. The first obvious
application for the algorithm traced back to 1962 when
Holland introduced the algorithm in his work studying
adaptive systems [20]. The algorithm then received an
enormous exploration by Goldberg [21].The main advantages
of GA are its global optimization performance and the ease of
distributing its calculations among several processors or
computers as it operates on the population of solutions that
can be evaluated concurrently. It is a very simple method,
generally applicable, not inclined to local optimization
problems that arise in a multimodal search space, and no
needs for special mathematical treatment. Moreover the
algorithm is more applicable for the discontinuous problem
unlike the conventional gradient-based searching algorithms.

Genetic algorithm basically works based on the mechanism
of natural selection and evolutionary genetics. The algorithm
starts by coding the wvariables to binary strings
(chromosomes). Every chromosome has » genes. The gene is
a binary bit by value zero or one. Three main operations
control the procedure of the GA: reproduction, crossover, and
mutation. Reproduction is processing to select the parent from
a generation. The process is based on survival of the fittest
(highest performance index). In this way, the reproduction
process guides the search for the best individuals (high
performance index). After the individuals are selected, the
crossover process is then used to swap between two
chromosomes by specific probabilistic decision. The
crossover process generates offspring carrying mixed
information from swapped parents (chromosomes). Mutation
is the mechanism to prevent the algorithm from local optimal
points by adding some degree of randomness. The process is
performed by alternation of the gene from zero to one or from
one to zero with the mutation point determined uniformly at
random. The mutation rate should be consider carefully since
the higher mutation rate means more number of generations
are required for algorithm convergence and a low mutation
rate may lead to a convergence for a local minimum. The
algorithm maintains a constant size of generation by selecting
the fittest chromosomes from parents and offsprings. The
algorithm iteratively operates to converge for schema matches
by some tolerance. Roughly, a genetic algorithm works as
shown in Fig. 5. Further description of genetic algorithms can
be found in Goldberg [21-22].

Fig. 6 shows a joint space PD controller scheme. In this
scheme, the inverse kinematics is employed to compute the



International Journal of Aerospace and Mechanical Engineering 2:2 2008

desired joint displacements (L, L, ..., Ls) from the desired
task space displacements (x; Vi, za, 04 04 Wa ), the desired
and measured joint displacements are then compared feeding

the control logic.

Make initial
population at random

Reduce the extended
population

[}

Output the best
individual found

{ Stop )

Select parents from
the population

Crossover: Produce offspring
from the selected parents

1

[ Mutate individuals I

|

Extend the population adding
the offspring to it.

Fig. 5 Flow chart of genetic algorithm
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Fig. 6 Joint space PD controller

The control law of this PD is given as

The PD controller is commonly designed by analytical
methods such as root locus, or state space model [23-25]. If
the nonlinearity is significant, then it is difficult to use such
analytical methods and weigh up the influence of each gain on
the response. In this case, other methods were proposed.
Haruhisa [23] has developed a gain tuning technique based on
time derivatives. Faa-Jeng [24] used a recurrent fuzzy-neural-
network (RFNN) to tune an IP controller. The application of
optimal tuning technique to the controller gains has been
extensively explored for processes that are difficult to be
tuned analytically. Baogang [25] proposed a new
methodology for a nonlinear PID control. This controller is
based on the theoretical fuzzy analysis and genetic-based
optimization. The controllers gave better results than the
conventional PID. The controller has not been applied to

practical problems; the model is a nonlinear mathematical one.
Chris [26] has applied an optimization technique to control a
robot in tracking problem as a highly nonlinear problem. The
results showed the power of using optimization techniques in
tuning controller parameters. This encourages using
optimization techniques in this research to tune controller
gains of Stewart manipulator.

The performance index given in (16) is selected here to
minimize the absolute area under the error curve (difference
between desired and measured joint displacements) with time.
In addition, another term proportional to the settling time is
added avoiding the flatness of the error curve. A 2% criteria is
used to define the settling time. Settling time is also
considered as the time span for the integration The weighting
factors w; and w, are selected such that the two terms in the
cost function being in the same level of the magnitude.

6 [=tspan

Fcost =wp X z J‘|ei(l’|dt+wz thpan
i=1 (16)
=L =0

ei(t)="L;,(6)-L ()
GA in Fig. 5 propagates searching for optimal controller gains
in (15) to minimize the cost function in (16) for unit step
inputs as a reference.

V. SIMULATION RESULTS AND DISCUSSION

The proposed optimization technique is applied to the
Stewart platform with parameters given in Table I.

TABLE [
SIMULATION PARAMETERS OF STEWART MANIPULATOR

Variable Description Value Unit
L, Length of upper leg 0.95 m
L Length of lower leg 0.95 m
R, Radius of upper plate 1 m
R Radius of base plate 1 m
a Joint angles of base plate ~ [-50, 50, 70, 170,-170, -70] deg
B fointangles ofupper 1 » 5 415 122, 122-18]  deg

plate
My Mass of each upper leg 37.17 kg
my Mass of each lower leg 37.17 kg
m, Mass of each upper plate 194.71 kg
K, Lower value of K, 10* N/m
K, Upper value of K, 10° N/m
K Lower value of Ky 10° Ns/m
K, Upper value of K, 10° Ns/m
Moment of inertia of the
RIS Jower leg 0.0632, 2.8536, 2.8536 kg
Moment of inertia of the
I, [yu L, upper leg 0.0094, 1.5921, 1.5921 kg
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For GA optimization, the mutation rate is 10%. Each
generation has a fixed population size 100 or no generation
overlap. The algorithm is highly convergent. The number of
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generations for convergence is 30. The optimization algorithm
converges at the values of K, and K; as {9.623 8.055 7.939
6.487 7.755 3.323} x10° N/m and {1.745 2.461 5.006 3.452
3.264 1.203} x10* N.sec/m respectively. The performance of
the controller is tested again by a generic mission. This
mission is a horizontal circular track with radius 0.01 m. The
parametric equation of this mission is defined as

2w T . (2at
{=—/|1t——sin| —
ezl
x, =0.01sin({)
¥, = 0.01(1 - cos (&)
z=1
0<{<2mand 0<t<T

(17

where the dummy variable { is implemented to pledge that all
functions in (17) have zero velocities and accelerations at the
beginning and end of the mission. Also the mission has been
assigned to be inside the geometric workspace given in Fig. 7.
The inverse kinematics was employed to compute the
reference joint space displacements (L;) shown in Fig. 8. Now
the control model is tested onsite this mission, when (L,) is
considered as inputs (see Fig. 6). Fig. 9 shows the generated
actuator forces based on the control law given in (15). The
time records of the actuator forces look very smooth. This
implies that the controller has the capability to capture the
relation between the applied forces and the measured joint
displacements. Fig. 10 mentions the error between the desired
and measured task space displacements. In Fig. 10, the order
of maximum error is 10™ m, while the order of the desired task
displacement is 10 m, which is quite adequate for the flight
simulator applications. In addition two different payloads are
added to the upper platform. Fig. 12 demonstrates the
capability of the controller to perform at different operating
conditions with acceptable accuracy levels.

1
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Fig. 7 The geometric workspace at zero orientation
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Fig. 8 Active Joint Displacements for Desired Track
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Fig. 9 Actuator forces
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Fig. 10 Error over the Track
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Fig. 11 Change in tracking accuracy with the payload

VI. CONCLUSIONS

This paper presents the modeling and control algorithm of a
non-redundant 6-DOF Stewart manipulator. It shows that the
PD control scheme, using active joints’ degrees of freedom
feedback and optimized with GA, is computationally efficient
and easy to implement as far as the accuracy of the inverse
kinematics model is guaranteed. The control scheme is tested
on a three-dimensional circular mission. The results show the
efficiency of the algorithm and the robustness of the resulting
controller with variable load.
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