
Abstract—Applicability of tuning the controller gains for 
Stewart manipulator using genetic algorithm as an efficient search 
technique is investigated. Kinematics and dynamics models were 
introduced in detail for simulation purpose. A PD task space control 
scheme was used. For demonstrating technique feasibility, a Stewart 
manipulator numerical-model was built. A genetic algorithm was 
then employed to search for optimal controller gains. The controller 
was tested onsite a generic circular mission. The simulation results 
show that the technique is highly convergent with superior 
performance operating for different payloads.  

Keywords—Stewart Kinematics, Stewart Dynamics, Task Space 
Control, Genetic Algorithm. 

I. INTRODUCTION

LIGHT simulators imitate the physical feeling of piloting 
an aircraft by providing graphical windows, sound, and 

motion platform. One of the most popular flight simulator 
platforms is Stewart manipulator, where a moving plate is
connected to a base plate by six legs. Each leg has an upper 
part sliding inside a lower part simulating the three 
translational motions (surge, sway, and heave) and the three 
rotational motions (pitch, roll, and yaw) as shown in Fig. 1.  

Fig. 1 Stewart Manipulator 
Two schemes are commonly used in control of the Stewart 

manipulator:  task space control and joint space control. The
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task space control scheme has been investigated by [1-2]. In 
this scheme, the frame work is multi-inputs multi-outputs 
(MIMO). Thus the forward kinematics model is imbedded in 
the control loop to estimate the task space displacements (X)
from the measured joint displacements (q) as shown in Fig. 2. 
The task space control is exacerbated by the fact that the 
direct kinematics of Stewart manipulator has no closed form 
solution. For example, Dietmaier [3] has addressed 40 
possible solutions for the forward kinematics. A lot of studies 
have tried to simplify the direct kinematics problem by 
different approaches. Pratik [4], and Sadjadian [5-6] used the 
neural network approach. The accuracy of this approach is 
very sensitive to the structure of the neural network. For 
example, Sadjadian [6] showed that changing the structure of 
neural networks can lead to different accuracy levels in 
forward kinematics modeling for the Stewart manipulator. 
Ilian [7] presented a new closed-form solution of the problem 
but it used three extra sensors. Liu [8-9] proposed a numerical 
algorithm based on a fundamental geometric operation with 
three nonlinear simultaneous algebraic equations, which is 
impractical for the control process. All this literature 
emphasizes the complexity of applying task space control 
scheme.  

Forward Kinematics
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Fig. 2 Scheme of the task space control 

On the other hand, the joint space scheme is developed by 
the information of joint displacements only, since each leg of 
the manipulator is controlled as a single-input single-output 
(SISO) system. The error between the actual and desired joint 
displacement is used as a feedback signal to the controller. 
The inverse kinematics of the Stewart manipulator has a 
closed form and it is easy to be implemented. In this way, the 
sophisticated computations of the forward kinematics are 
omitted from the control loop. This scheme has been widely 
used by many research reports, especially for experimental 
application. Pasquale [10] used a robust control scheme with 
acceleration feedback. Li [11] designed a proportional gain 
controller. Fang [12] implemented a fuzzy control. Su [13] 
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proposed a new technique of robust auto disturbance rejection 
controller (ADRC). However all these studies overlook the 
manipulator dynamics, because the controller is designed 
based on actuator model such as hydraulic system [11, 13], or 
servo motors [10, 12], which restricts the ability of designing 
a controller with high performance tracking. 

The contribution of this paper is to show the merit of using 
genetic algorithm in tuning the controller gains for Stewart 
manipulator based on manipulator dynamics instead of 
actuator dynamics as in the previous studies [10-13]. For 
simplicity, a PD controller in joint space is considered. An 
optimization problem is assigned seeking for minimum 
settling time and minimum error when a step input is 
considered as a reference input. The error is defined here as 
the difference between the observed and the desired joint 
displacements. This paper is organized as follows: in section 
two, the description of inverse kinematics enables one to 
determine the link lengths in terms of desired/specified upper 
platform position and angular orientations. Section three 
includes a discussion about the dynamics model. The use of a 
genetic algorithm to search for controller gains is presented in 
section four. Section five offers the results of the simulation 
used to examine the proposed technique. Finally, section six is 
the conclusion. 

II. INVERSE KINEMATICS MODEL

There are two frames describing the motion of the moving 
plate: an inertia frame (X, Y, Z) located at the center of the 
base plate and a body frame (xB, yB, zB) located at the center of 
the moving plate with the zB-axis pointing outward. The angle 
between the local xB-axis of the moving plate and the line of 
the joint Jui is denoted by i as shown in Fig. 3.   

Fig. 3 Joint position on the moving plate 
The position of the joint Jui in the plate body frame is  
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In the same manner, an angle i is defined between the inertia 
X-axis and the line of the joint Jli. The position of the joint Jli
in the inertia frame is defined as: 
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The upper plate has a capability for 6-DOF motion (three 
rotational motions and three translational motions). The 
rotational motions of the plate are defined by Euler angles in 
sequence 1-2-3. Thus the transformation from the body frame 
(xB, yB, zB) to the inertia frame (X, Y, Z) is given by the 
Matrix plateR :

plate

CCCSS
CSSSCCCSSSSC
SSCSCSCCSSCC

R (3)

where C refers to angle cosine and S refers to angle sine. The 
angles , , and are Euler angles. The absolute angular 
velocity of the movable plate in body frame is given by  

SCC
CCS

S

p

0
0

01
(4)

In addition to the rotation, one should consider the translation 
vector I

plateT as:

hz(t)
y(t)
x(t)

T I
plate (5)

where h is the initial height of the upper plate’s center. The 
trajectory of the upper plate’s center is defined by x(t) , y(t) ,
and z(t) . The position of the joint Jui in inertial frame (X, Y, Z)
is then calculated as: 

I
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The length vector of the ith leg I
iL  can then be computed from  

(2) and (6) as: 

,...,,        i-PPL I
J

I
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I
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621 (7)

By substituting from (3) and (5) into (6), and considering the 
square value of vector I

iL in (7), the relationship between the 
joint space variables and task space variables can be 
summarized as: 
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and i = 1, 2, …, 6. Based on (8), the inverse kinematics has a 
closed form. On the other hand, it is “impossible” to develop 
any closed form for the forward kinematics. 

Each leg has three degrees of freedom: two rotational and 
one translational motion. The leg can rotate around the 
universal joint, while the upper part of the leg is sliding inside 
the lower part by an actuating force F as shown in Fig. 4. 
Thus a spherical joint is employed to connect the upper part of 
each leg by the movable plate while the lower part is 
connected to the base plate by a universal joint. 

Fig. 4 Leg mechanism of Stewart manipulator 

The motion of the each leg is considered by two frames: a 
leg fixed frame (Xleg, Yleg, Zleg) located at the joint Jli parallel to 
the inertia frame and the leg body frame (xbl, ybl, zbl) located at 
the same point with xbl-axis pointing in upward. The rotation 
sequence of the leg starts from rotating around ZLeg-axis with 
an angle , followed by a rotation about the ybl-axis with an 
angle . The rotational angle of the leg can be specified by the 
position of the upper joint I

uJP  and the position of the lower 
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where i =1,2,…,6. The transformation matrix 
iLegR from  

(xbl, ybl, zbl) frame to (Xleg, Yleg, Zleg) frame is given as 

ii

iiiii

iiiii
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The angular velocity i  of the ith leg with respect to the leg 
body frame is defined by 

i

cos

sin
(11)

III. DYNAMICSS MODEL

The dynamics model of Stewart manipulator has been 
addressed by many methods such as the Lagrange equation [1, 
11], Newton-Euler equation [13-14], and the principle of 
virtual work [16-17]. Based on the results that have been 
shown by Khalil [18], Newton-Euler method emerged as the 
most effective way to model Stewart manipulator dynamics. 
However this method has been highlighted by some common 
errors in previous research reports. These errors were listed by 
Shaowen [19], and corrected in the current research.

In Newton–Euler method, the dynamics model of Stewart 
manipulator is described through 24 governing equations, six 
equations for the movable plate, and the others for the legs. 
For completeness, the dynamic equations will be list here. 
More details of the derivation are given by many references 
[13, 14, and 18]. Thus the moment equation around the 
universal joint is  

0iiilui

iluuuulll

fLII

IIagrmagrm

ii

iiiiiiii
(12)

where
ilm is the lower leg mass, 

ium  is the upper leg mass, 

 [
ilI ] is the “invariant” inertia matrix of the lower leg ,  

[
iuI ] is the “variant” inertia matrix [17] of the upper sliding 

leg, 
ila is the acceleration of the lower leg, 

iua is the 
acceleration of  the upper leg, g  is the gravitational 
acceleration, i is the angular velocity of the leg , i is the 

angular acceleration, iL  is the length of the whole prismatic 
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leg, 
ilr is the position vector of the lower leg from universal 

joint, 
iur  is the position vector of  the upper leg measured 

from the universal joint, and if  is the reaction force between 

the spherical joint and the upper plate. The reaction force if
is decomposed into three components in the leg’s body frame 
as shown in Fig. 4. The force equation in xbl-direction of the 
sliding mechanism is given as 

iiii xiuuu fFagrm (13)

The dynamics of the upper plate have three moment equations 
and three force equations as
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where i =1,2,…,6, mp is the mass of plate plus the external 
payload, [ pI ] is the inertia matrix of the upper plate, pa  is 

the acceleration for the upper plate’s center of mass, p

and p  are the angular velocity and acceleration of plate, and 

bir  the position vector from the center of plate to the joint Jli.
Solving the dynamic equations of Stewart manipulator has 

two models. The first model is the inverse dynamics 
computing the equilibrium forces. The second model is the 
forward dynamics building the simulation tool. The input of 
the inverse dynamics is the desired trajectory of the movable 
platform as a function of the time and the outputs are the 
actuator forces. On the other hand, the inputs of the forward 
dynamics models are the actuator forces applied at cylindrical 
joints, and the outputs are the movable upper plate positions 
and orientations. The algorithm of the inverse dynamics model 
can be summarized in the following steps: 

Step1: Specify the desired task space displacements as 
[ (t), (t), (t),  x(t), y(t), z(t)]T  and their derivatives 
with time. 

Step2: Obtain the transformation matrix Rplate of the 
moving plate from (3). 

Step4: Obtain the angular velocity of the moving plate 
p from (4).  

Step5: Use numerical differentiation to compute the 
angular acceleration of the moving plate p .

Step6: Compute the positions of joints Jui and Jli from 
(2) and (6). 

Step7: Obtain the value of angles  and  for each leg 
from (9). 

Step8: Obtain the transformation matrix for each leg 
Rleg from (10). 

Step9: Use numerical differentiation to evaluate the 
time derivatives of angles and .

Step10: Obtain the angular velocity  of each leg 
from (11). 

Step11: Use numerical differentiation to compute the 
angular acceleration for each leg. 

Step12: Solve (12) to compute fy and fz for each leg. 
Step13: Solve (14) as a set of linear homogenous 

equations in fxi

Step14: Calculate the actuating force F from (13). 

Sequentially, the forward dynamics model is developed in 
reverse direction of the inverse kinematics algorithm. 

IV. OPTIMIZATION PROCEDURE USING GA

Genetic algorithm is now considered as one of the most 
popular optimization and search techniques. The first obvious 
application for the algorithm traced back to 1962 when 
Holland introduced the algorithm in his work studying 
adaptive systems [20]. The algorithm then received an 
enormous exploration by Goldberg [21].The main advantages 
of GA are its global optimization performance and the ease of 
distributing its calculations among several processors or 
computers as it operates on the population of solutions that 
can be evaluated concurrently. It is a very simple method, 
generally applicable, not inclined to local optimization 
problems that arise in a multimodal search space, and no 
needs for special mathematical treatment. Moreover the 
algorithm is more applicable for the discontinuous problem 
unlike the conventional gradient-based searching algorithms.  

Genetic algorithm basically works based on the mechanism 
of natural selection and evolutionary genetics. The algorithm 
starts by coding the variables to binary strings 
(chromosomes). Every chromosome has n genes. The gene is 
a binary bit by value zero or one. Three main operations 
control the procedure of the GA: reproduction, crossover, and 
mutation. Reproduction is processing to select the parent from 
a generation. The process is based on survival of the fittest 
(highest performance index). In this way, the reproduction 
process guides the search for the best individuals (high 
performance index). After the individuals are selected, the 
crossover process is then used to swap between two 
chromosomes by specific probabilistic decision. The 
crossover process generates offspring carrying mixed 
information from swapped parents (chromosomes). Mutation 
is the mechanism to prevent the algorithm from local optimal 
points by adding some degree of randomness. The process is 
performed by alternation of the gene from zero to one or from 
one to zero with the mutation point determined uniformly at 
random. The mutation rate should be consider carefully since 
the higher mutation rate means more number of generations 
are required for algorithm convergence and a low mutation 
rate may lead to a convergence for a local minimum. The 
algorithm maintains a constant size of generation by selecting 
the fittest chromosomes from parents and offsprings. The 
algorithm iteratively operates to converge for schema matches 
by some tolerance. Roughly, a genetic algorithm works as 
shown in Fig. 5. Further description of genetic algorithms can 
be found in Goldberg [21-22].  

Fig. 6 shows a joint space PD controller scheme. In this 
scheme, the inverse kinematics is employed to compute the 
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desired joint displacements (L1, L2, …, L6) from the desired 
task space displacements (xd, yd , zd , d, d, d ), the desired 
and measured joint displacements are then compared feeding 
the control logic. 

Fig. 5 Flow chart of genetic algorithm 

Fig. 6  Joint space PD controller   

The control law of this PD is given as 
)LL(KL)(LKeKeKF refdrefpdp (15)

The PD controller is commonly designed by analytical 
methods such as root locus, or state space model [23-25]. If 
the nonlinearity is significant, then it is difficult to use such 
analytical methods and weigh up the influence of each gain on 
the response. In this case, other methods were proposed. 
Haruhisa [23] has developed a gain tuning technique based on 
time derivatives. Faa-Jeng [24] used a recurrent fuzzy-neural-
network (RFNN) to tune an IP controller. The application of 
optimal tuning technique to the controller gains has been 
extensively explored for processes that are difficult to be 
tuned analytically. Baogang [25] proposed a new 
methodology for a nonlinear PID control. This controller is 
based on the theoretical fuzzy analysis and genetic-based 
optimization. The controllers gave better results than the 
conventional PID. The controller has not been applied to 

practical problems; the model is a nonlinear mathematical one. 
Chris [26] has applied an optimization technique to control a 
robot in tracking problem as a highly nonlinear problem. The 
results showed the power of using optimization techniques in 
tuning controller parameters. This encourages using 
optimization techniques in this research to tune controller 
gains of Stewart manipulator. 

The performance index given in (16) is selected here to 
minimize the absolute area under the error curve (difference 
between desired and measured joint displacements) with time. 
In addition, another term proportional to the settling   time is 
added avoiding the flatness of the error curve. A 2% criteria is 
used to define the settling time. Settling time is also 
considered as the time span for the integration The weighting 
factors w1 and w2 are selected such that the two terms in the 
cost function being in the same level of the magnitude. 

tLtL(t)e

twdt(t)ewF

idii
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i

tspant

t
it 2

6

1 0
1cos (16)

GA in Fig. 5 propagates searching for optimal controller gains 
in (15) to minimize the cost function in (16) for unit step 
inputs as a reference.  

V. SIMULATION RESULTS AND DISCUSSION

The proposed optimization technique is applied to the 
Stewart platform with parameters given in Table I.  

TABLE I
SIMULATION PARAMETERS OF STEWART MANIPULATOR

Variable Description Value Unit 

Lu Length of upper leg 0.95 m 

Ll Length of lower leg 0.95 m 

Ru Radius of upper plate 1 m 

Rl Radius of base plate 1 m 

Joint angles of base plate [-50 , 50, 70, 170,-170, -70] deg 

Joint angles of upper 
plate [-2, 2, 118,  122, -122 -18] deg 

mlu Mass of each upper leg 37.17 kg 

mll Mass of each lower leg 37.17 kg 

mu Mass of each upper plate 194.71 kg 

KpL Lower value of Kp 104 N/m 

Kpu Upper value of Kp 106 N/m 

KdL Lower value of Kd 103 Ns/m 

Kdu Upper value of Kd 105 Ns/m 

Ixl Iyl Izl
Moment of inertia of the 

lower leg 0.0632, 2.8536, 2.8536 kg 

Ixu Iyu Izu
Moment of inertia of the 

upper leg 0.0094, 1.5921, 1.5921 kg 

For GA optimization, the mutation rate is 10%. Each 
generation has a fixed population size 100 or no generation 
overlap. The algorithm is highly convergent. The number of 
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generations for convergence is 30. The optimization algorithm 
converges at the values of Kp and Kd as {9.623 8.055 7.939 
6.487 7.755 3.323} x105 N/m and {1.745 2.461 5.006 3.452 
3.264 1.203} x104 N.sec/m respectively.  The performance of 
the controller is tested again by a generic mission. This 
mission is a horizontal circular track with radius 0.01 m.  The 
parametric equation of this mission is defined as 

Tt  and
z

(.y
.x

T
tTt

T

tr

tr

020
1

cos1010
sin010

2sin
2

2

(17)

where the dummy variable  is implemented to pledge that all 
functions in (17) have zero velocities and accelerations at the 
beginning and end of the mission. Also the mission has been 
assigned to be inside the geometric workspace given in Fig. 7. 
The inverse kinematics was employed to compute the 
reference joint space displacements (Ld) shown in Fig. 8. Now 
the control model is tested onsite this mission, when (Ld) is 
considered as inputs (see Fig. 6). Fig. 9 shows the generated 
actuator forces based on the control law given in (15). The 
time records of the actuator forces look very smooth. This 
implies that the controller has the capability to capture the 
relation between the applied forces and the measured joint 
displacements. Fig. 10 mentions the error between the desired 
and measured task space displacements. In Fig. 10, the order 
of maximum error is 10-5 m, while the order of the desired task 
displacement is 10-2 m, which is quite adequate for the flight 
simulator applications. In addition two different payloads are 
added to the upper platform. Fig. 12 demonstrates the 
capability of the controller to perform at different operating 
conditions with acceptable accuracy levels. 
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VI. CONCLUSIONS

This paper presents the modeling and control algorithm of a 
non-redundant 6-DOF Stewart manipulator. It shows that the 
PD control scheme, using active joints’ degrees of freedom 
feedback and optimized with GA, is computationally efficient 
and easy to implement as far as the accuracy of the inverse 
kinematics model is guaranteed. The control scheme is tested 
on a three-dimensional circular mission. The results show the 
efficiency of the algorithm and the robustness of the resulting 
controller with variable load. 
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