Equations of Motion

In Part I, balance of forces and moments acting on any component was enforced in order
to ensure that the component was in equilibrium. Here, allowance is made for stresses
which vary continuously throughout a material, and force equilibrium of any portion of
material is enforced.

One-Dimensional Equation

Consider a one-dimensional differential element of length Ax and cross sectional area 4,
Fig. 1.1.1. Let the average body force per unit volume acting on the element be b and the
average acceleration and density of the element be a and p. Stresses o act on the
element.
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Figure 1.1.1: a differential element under the action of surface and body forces

The net surface force acting is o(x + Ax)4 — o(x)A . If the element is small, then the

body force and velocity can be assumed to vary linearly over the element and the average
will act at the centre of the element. Then the body force acting on the element is AbAx
and the inertial force is p4Axa. Applying Newton’s second law leads to

o(x+Ax)A—o(x)A+bAxA = paAxA

_)O'(x+Ax)—0'(x)+b=pa (1.1.1)

so that, by the definition of the derivative, in the limit as Ax — 0,

cjl—a+b = pa| 1-d Equation of Motion (1.1.2)
X

which is the one-dimensional equation of motion. Note that this equation was derived
on the basis of a physical law and must therefore be satisfied for all materials, whatever
they be composed of.

The derivative do/dx is the stress gradient — physically, it is a measure of how rapidly
the stresses are changing.

Example

Consider a bar of length / which hangs from a ceiling, as shown in Fig. 1.1.2.
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Figure 1.1.2: a hanging bar

The gravitational force is F' = mg downward and the body force per unit volume is thus
b = pg. There are no accelerating material particles. Taking the z axis positive down, an
integration of the equation of motion gives

ci,—a+pg=0 — o=-pgz+c (1.1.3)
zZ

where c is an arbitrary constant. The lower end of the bar is free and so the stress there is
zero, and so

o= pg(l-2) (1.1.4)
|
Two-Dimensional Equations

Consider now a two dimensional infinitesimal element of width and height Ax and Ay
and unit depth (into the page).

Looking at the normal stress components acting in the x —direction, and allowing for
variations in stress over the element surfaces, the stresses are as shown in Fig. 1.1.3.
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Figure 1.1.3: varying stresses acting on a differential element

Using a (two dimensional) Taylor series and dropping higher order terms then leads to the
linearly varying stresses illustrated in Fig. 1.1.4. (where o, = o (x,y) and the partial

derivatives are evaluated at (x, y)), which is a reasonable approximation when the
element is small.
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Figure 1.1.4: linearly varying stresses acting on a differential element

For the left and right sides, one has, respectively,

The effect (resultant force) of this linear variation of stress on the plane can be replicated
by a constant stress acting over the whole plane, the size of which is the average stress.

1 oo
o Ay
XX 2 y

S L L (1.1.5)
ox 2 oy
One can take away the stress (1/2)Aydo /0y from both sides without affecting the net

force acting on the element so one finally has the representation shown in Fig. 1.1.5.
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Figure 1.1.5: net stresses acting on a differential element

Carrying out the same procedure for the shear stresses contributing to a force in the
x —direction leads to the stresses shown in Fig. 1.1.6.
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Figure 1.1.6: normal and shear stresses acting on a differential element

Take a_, b, to be the average acceleration and body force, and p to be the average
density. Newton’s law then yields
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a(fm 66}6}/
-0, Av+|o, +Ax Ay-o, Ax+|o, + Aya— Ay + b AxAy = pa AxAy
Y

Ox
(1.1.6)
which, dividing through by AxAy and taking the limit, gives
0o Oo W
—+ +b, = 1.1.7
Ox o o (117

A similar analysis for force components in the y —direction yields another equation and

one then has the two-dimensional equations of motion:

oo
00, +—=+b = pa,
ox oy . .
2-D Equations of Motion (1.1.8)
oo, . oo, i h =
Ox oy y =Py

Three-Dimensional Equations

Similarly, one can consider a three-dimensional element, and one finds that

ao_xx aO-XV 8O-xz
+—+ +b, = pa,
ox oy 0z :
do, 0o, Oo, _ _
+ + +b, =pa,| 3-D Equations of Motion (1.1.9)
ox oy 0z
aO-z)r aGZy ao-zz
+ + +b. = pa,.
Ox oy oz
These three equations express force-balance in, respectively, the x, y, z directions.
Kelly
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signant par oG, &, L les projections algébriques de la force accélératrice qui scrait

capable de produire 2 ello seule s mouvement effoctif d’une parlicule, et prenant z,
y. &, t pour variables indépendantes, on obtiendra, 2 la place des équations (1), celles

dd | dF _ dE
= Tt teX=rx.

dF dB dD
;;"+1E"+—;“+¢15=P3.
dE dD ac
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Eufin, si I'on nomme &, », { les déplacements de la particule qui, au bout d’un
coincide avec le point

donnés, on trouvera, en supposant ces déplacements trés-petits,

(%, y,2), mesurés parallélement aux axes coor-

Figure 1.1.7: from Cauchy’s Exercices de Mathematiques (1829)

The Equations of Equlibrium

If the material is not moving (or is moving at constant velocity) and is in static
equilibrium, then the equations of motion reduce to the equations of equilibrium,

0
6O-xx + O-x)’ 8O-xz +b — O
ox oy 0z
oo, 0o, 0o, : —_—
+ +b, =0 3-D Equations of Equilibrium
Ox oy 0z
oo
80_2}: + zy ao-zz +b :O
ox oy oz

(1.1.10)

These equations express the force balance between surface forces and body forces in a
material. The equations of equilibrium may also be used as a good approximation in the
analysis of materials which have relatively small accelerations.
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