
Trees 

Like linked lists, trees are made up of nodes. A common kind of tree is a binary tree, in 

which each node contains a reference to two other nodes (possibly None). These 

references are referred to as the left and right subtrees. Like list nodes, tree nodes also 

contain cargo. A state diagram for a tree looks like this: 

To avoid cluttering up the picture, we often omit the Nones. 

The top of the tree (the node tree refers to) is called the root. In keeping with the tree 

metaphor, the other nodes are called branches and the nodes at the tips with null 

references are called leaves. It may seem odd that we draw the picture with the root at 

the top and the leaves at the bottom, but that is not the strangest thing. 

To make things worse, computer scientists mix in another metaphor – the family tree. 

The top node is sometimes called a parent and the nodes it refers to are itschildren. 

Nodes with the same parent are called siblings. 

Finally, there is a geometric vocabulary for talking about trees. We already mentioned 

left and right, but there is also up (toward the parent/root) and down (toward the 

children/leaves). Also, all of the nodes that are the same distance from the root 

comprise a level of the tree. 

We probably don’t need three metaphors for talking about trees, but there they are. 

Like linked lists, trees are recursive data structures because they are defined recursively. 

A tree is either: 

1. the empty tree, represented by None, or 

2. a node that contains an object reference (cargo) and two tree references. 

21.1. Building trees 

The process of assembling a tree is similar to the process of assembling a linked list. 

Each constructor invocation builds a single node. 

class Tree: 

    def __init__(self, cargo, left=None, right=None): 

        self.cargo = cargo 

        self.left  = left 

        self.right = right 



 

    def __str__(self): 

        return str(self.cargo) 

The cargo can be any type, but the left and right parameters should be tree 

nodes. left and right are optional; the default value is None. 

To print a node, we just print the cargo. 

One way to build a tree is from the bottom up. Allocate the child nodes first: 

left = Tree(2) 

right = Tree(3) 

Then create the parent node and link it to the children: 

tree = Tree(1, left, right); 

We can write this code more concisely by nesting constructor invocations: 

>>> tree = Tree(1, Tree(2), Tree(3)) 

Either way, the result is the tree at the beginning of the chapter. 

21.2. Traversing trees 

Any time you see a new data structure, your first question should be, How do I traverse 

it? The most natural way to traverse a tree is recursively. For example, if the tree 

contains integers as cargo, this function returns their sum: 

def total(tree): 

    if tree == None: return 0 

    return total(tree.left) + total(tree.right) + tree.cargo 

The base case is the empty tree, which contains no cargo, so the sum is 0. The recursive 

step makes two recursive calls to find the sum of the child trees. When the recursive 

calls complete, we add the cargo of the parent and return the total. 

 



21.3. Expression trees 

A tree is a natural way to represent the structure of an expression. Unlike other 

notations, it can represent the computation unambiguously. For example, the infix 

expression 1 + 2 * 3 is ambiguous unless we know that the multiplication happens 

before the addition. 

This expression tree represents the same computation: 

The nodes of an expression tree can be operands like 1 and 2 or operators like + and *. 

Operands are leaf nodes; operator nodes contain references to their operands. (All of 

these operators are binary, meaning they have exactly two operands.) 

We can build this tree like this: 

>>> tree = Tree('+', Tree(1), Tree('*', Tree(2), Tree(3))) 

Looking at the figure, there is no question what the order of operations is; the 

multiplication happens first in order to compute the second operand of the addition. 

Expression trees have many uses. The example in this chapter uses trees to translate 

expressions to postfix, prefix, and infix. Similar trees are used inside compilers to parse, 

optimize, and translate programs. 

21.4. Tree traversal 

We can traverse an expression tree and print the contents like this: 

def print_tree(tree): 

    if tree == None: return 

    print tree.cargo, 

    print_tree(tree.left) 

    print_tree(tree.right) 

In other words, to print a tree, first print the contents of the root, then print the entire 

left subtree, and then print the entire right subtree. This way of traversing a tree is called 

a preorder, because the contents of the root appear before the contents of the children. 

For the previous example, the output is: 

>>> tree = Tree('+', Tree(1), Tree('*', Tree(2), Tree(3))) 

>>> print_tree(tree) 



+ 1 * 2 3 

This format is different from both postfix and infix; it is another notation called prefix, 

in which the operators appear before their operands. 

You might suspect that if you traverse the tree in a different order, you will get the 

expression in a different notation. For example, if you print the subtrees first and then 

the root node, you get: 

def print_tree_postorder(tree): 

    if tree == None: return 

    print_tree_postorder(tree.left) 

    print_tree_postorder(tree.right) 

    print tree.cargo, 

The result, 1 2 3 * +, is in postfix! This order of traversal is called postorder. 

Finally, to traverse a tree inorder, you print the left tree, then the root, and then the right 

tree: 

def print_tree_inorder(tree): 

    if tree == None: return 

    print_tree_inorder(tree.left) 

    print tree.cargo, 

    print_tree_inorder(tree.right) 

The result is 1 + 2 * 3, which is the expression in infix. 

To be fair, we should point out that we have omitted an important complication. 

Sometimes when we write an expression in infix, we have to use parentheses to preserve 

the order of operations. So an inorder traversal is not quite sufficient to generate an infix 

expression. 

Nevertheless, with a few improvements, the expression tree and the three recursive 

traversals provide a general way to translate expressions from one format to another. 

If we do an inorder traversal and keep track of what level in the tree we are on, we can 

generate a graphical representation of a tree: 

def print_tree_indented(tree, level=0): 



    if tree == None: return 

    print_tree_indented(tree.right, level+1) 

    print '  ' * level + str(tree.cargo) 

    print_tree_indented(tree.left, level+1) 

The parameter level keeps track of where we are in the tree. By default, it is initially 0. 

Each time we make a recursive call, we pass level+1 because the child’s level is always 

one greater than the parent’s. Each item is indented by two spaces per level. The result 

for the example tree is: 

>>> print_tree_indented(tree) 

    3 

  * 

    2 

+ 

  1 

If you look at the output sideways, you see a simplified version of the original figure. 

21.5. Building an expression tree 

In this section, we parse infix expressions and build the corresponding expression trees. 

For example, the expression (3 + 7) * 9 yields the following tree: 

Notice that we have simplified the diagram by leaving out the names of the attributes. 

The parser we will write handles expressions that include numbers, parentheses, and the 

operators + and *. We assume that the input string has already been tokenized into a 

Python list (producing this list is left as an exercise). The token list for (3 + 7) * 9 is: 

['(', 3, '+', 7, ')', '*', 9, 'end'] 

The end token is useful for preventing the parser from reading past the end of the list. 

The first function we’ll write is get_token, which takes a token list and an expected 

token as parameters. It compares the expected token to the first token on the list: if they 

match, it removes the token from the list and returns True; otherwise, it returns False: 

def get_token(token_list, expected): 

    if token_list[0] == expected: 



        del token_list[0] 

        return True 

    else: 

        return False 

Since token_list refers to a mutable object, the changes made here are visible to any 

other variable that refers to the same object. 

The next function, get_number, handles operands. If the next token in token_list is a 

number, get_number removes it and returns a leaf node containing the number; 

otherwise, it returns None. 

def get_number(token_list): 

    x = token_list[0] 

    if type(x) != type(0): return None 

    del token_list[0] 

    return Tree (x, None, None) 

Before continuing, we should test get_number in isolation. We assign a list of numbers 

to token_list, extract the first, print the result, and print what remains of the token list: 

>>> token_list = [9, 11, 'end'] 

>>> x = get_number(token_list) 

>>> print_tree_postorder(x) 

9 

>>> print token_list 

[11, 'end'] 

The next method we need is get_product, which builds an expression tree for products. 

A simple product has two numbers as operands, like 3 * 7. 

Here is a version of get_product that handles simple products. 

def get_product(token_list): 

    a = get_number(token_list) 

    if get_token(token_list, '*'): 

        b = get_number(token_list) 

        return Tree ('*', a, b) 

    else: 



        return a 

Assuming that get_number succeeds and returns a singleton tree, we assign the first 

operand to a. If the next character is *, we get the second number and build an 

expression tree with a, b, and the operator. 

If the next character is anything else, then we just return the leaf node with a. Here are 

two examples: 

>>> token_list = [9, '*', 11, 'end'] 

>>> tree = get_product(token_list) 

>>> print_tree_postorder(tree) 

9 11 * 

>>> token_list = [9, '+', 11, 'end'] 

>>> tree = get_product(token_list) 

>>> print_tree_postorder(tree) 

9 

The second example implies that we consider a single operand to be a kind of product. 

This definition of product is counterintuitive, but it turns out to be useful. 

Now we have to deal with compound products, like like 3 * 5 * 13. We treat this 

expression as a product of products, namely 3 * (5 * 13). The resulting tree is: 

With a small change in get_product, we can handle an arbitrarily long product: 

def get_product(token_list): 

    a = get_number(token_list) 

    if get_token(token_list, '*'): 

        b = get_product(token_list)       # this line changed 

        return Tree ('*', a, b) 

    else: 

        return a 

In other words, a product can be either a singleton or a tree with * at the root, a number 

on the left, and a product on the right. This kind of recursive definition should be 

starting to feel familiar. 

Let’s test the new version with a compound product: 



>>> token_list = [2, '*', 3, '*', 5 , '*', 7, 'end'] 

>>> tree = get_product(token_list) 

>>> print_tree_postorder(tree) 

2 3 5 7 * * * 

Next we will add the ability to parse sums. Again, we use a slightly counterintuitive 

definition of sum. For us, a sum can be a tree with + at the root, a product on the left, 

and a sum on the right. Or, a sum can be just a product. 

If you are willing to play along with this definition, it has a nice property: we can 

represent any expression (without parentheses) as a sum of products. This property is 

the basis of our parsing algorithm. 

get_sum tries to build a tree with a product on the left and a sum on the right. But if it 

doesn’t find a +, it just builds a product. 

def get_sum(token_list): 

    a = get_product(token_list) 

    if get_token(token_list, '+'): 

        b = get_sum(token_list) 

        return Tree ('+', a, b) 

    else: 

        return a 

Let’s test it with 9 * 11 + 5 * 7: 

>>> token_list = [9, '*', 11, '+', 5, '*', 7, 'end'] 

>>> tree = get_sum(token_list) 

>>> print_tree_postorder(tree) 

9 11 * 5 7 * + 

We are almost done, but we still have to handle parentheses. Anywhere in an expression 

where there can be a number, there can also be an entire sum enclosed in parentheses. 

We just need to modify get_number to handle subexpressions: 

def get_number(token_list): 

    if get_token(token_list, '('): 

        x = get_sum(token_list)         # get the subexpression 

        get_token(token_list, ')')      # remove the closing parenthesis 



        return x 

    else: 

        x = token_list[0] 

        if type(x) != type(0): return None 

        token_list[0:1] = [] 

        return Tree (x, None, None) 

Let’s test this code with 9 * (11 + 5) * 7: 

>>> token_list = [9, '*', '(', 11, '+', 5, ')', '*', 7, 'end'] 

>>> tree = get_sum(token_list) 

>>> print_tree_postorder(tree) 

9 11 5 + 7 * * 

The parser handled the parentheses correctly; the addition happens before the 

multiplication. 

In the final version of the program, it would be a good idea to give get_number a name 

more descriptive of its new role. 

21.6. Handling errors 

Throughout the parser, we’ve been assuming that expressions are well-formed. For 

example, when we reach the end of a subexpression, we assume that the next character 

is a close parenthesis. If there is an error and the next character is something else, we 

should deal with it. 

def get_number(token_list): 

    if get_token(token_list, '('): 

        x = get_sum(token_list) 

        if not get_token(token_list, ')'): 

            raise 'BadExpressionError', 'missing parenthesis' 

        return x 

    else: 

        # the rest of the function omitted 

The raise statement creates an exception; in this case we create a new kind of 

exception, called a BadExpressionError. If the function that called get_number, or one 



of the other functions in the traceback, handles the exception, then the program can 

continue. Otherwise, Python will print an error message and quit. 

21.7. The animal tree 

In this section, we develop a small program that uses a tree to represent a knowledge 

base. 

The program interacts with the user to create a tree of questions and animal names. 

Here is a sample run: 

Are you thinking of an animal? y 

Is it a bird? n 

What is the animals name? dog 

What question would distinguish a dog from a bird? Can it fly 

If the animal were dog the answer would be? n 

 

Are you thinking of an animal? y 

Can it fly? n 

Is it a dog? n 

What is the animals name? cat 

What question would distinguish a cat from a dog? Does it bark 

If the animal were cat the answer would be? n 

 

Are you thinking of an animal? y 

Can it fly? n 

Does it bark? y 

Is it a dog? y 

I rule! 

 

Are you thinking of an animal? n 

Here is the tree this dialog builds: 

At the beginning of each round, the program starts at the top of the tree and asks the 

first question. Depending on the answer, it moves to the left or right child and continues 

until it gets to a leaf node. At that point, it makes a guess. If the guess is not correct, it 

asks the user for the name of the new animal and a question that distinguishes the (bad) 



guess from the new animal. Then it adds a node to the tree with the new question and 

the new animal. 

Here is the code: 

def yes(ques): 

    ans = raw_input(ques).lower() 

    return ans[0] == 'y' 

 

def animal(): 

    # start with a singleton 

    root = Tree("bird") 

 

    # loop until the user quits 

    while True: 

        print 

        if not yes("Are you thinking of an animal? "): break 

 

        # walk the tree 

        tree = root 

        while tree.left != None: 

            prompt = tree.cargo + "? " 

            if yes(prompt): 

                tree = tree.right 

            else: 

                tree = tree.left 

 

        # make a guess 

        guess = tree.cargo 

        prompt = "Is it a " + guess + "? " 

        if yes(prompt): 

            print "I rule!" 

            continue 

 

        # get new information 

        prompt  = "What is the animal's name? " 

        animal  = raw_input(prompt) 

        prompt  = "What question would distinguish a %s from a %s? " 

        question = raw_input(prompt % (animal, guess)) 



 

        # add new information to the tree 

        tree.cargo = question 

        prompt = "If the animal were %s the answer would be? " 

        if yes(prompt % animal): 

            tree.left = Tree(guess) 

            tree.right = Tree(animal) 

        else: 

            tree.left = Tree(animal) 

            tree.right = Tree(guess) 

The function yes is a helper; it prints a prompt and then takes input from the user. If the 

response begins with y or Y, the function returns True. 

The condition of the outer loop of animal is True, which means it will continue until 

the break statement executes, if the user is not thinking of an animal. 

The inner while loop walks the tree from top to bottom, guided by the user’s responses. 

When a new node is added to the tree, the new question replaces the cargo, and the two 

children are the new animal and the original cargo. 

One shortcoming of the program is that when it exits, it forgets everything you carefully 

taught it! Fixing this problem is left as an exercise. 

21.8. Glossary 

binary tree 

A tree in which each node refers to zero, one, or two dependent nodes. 

root 

The topmost node in a tree, with no parent. 

leaf 

A bottom-most node in a tree, with no children. 

parent 

The node that refers to a given node. 

child 

One of the nodes referred to by a node. 



siblings 

Nodes that share a common parent. 

level 

The set of nodes equidistant from the root. 

binary operator 

An operator that takes two operands. 

subexpression 

An expression in parentheses that acts as a single operand in a larger expression. 

preorder 

A way to traverse a tree, visiting each node before its children. 

prefix notation 

A way of writing a mathematical expression with each operator appearing before its 

operand. 

postorder 

A way to traverse a tree, visiting the children of each node before the node itself. 

inorder 

A way to traverse a tree, visiting the left subtree, then the root, and then the right 

subtree. 

21.9. Exercises 

Modify print_tree_inorder so that it puts parentheses around every operator and pair 

of operands. Is the output correct and unambiguous? Are the parentheses always 

necessary? 

Write a function that takes an expression string and returns a token list. 

Find other places in the expression tree functions where errors can occur and add 

appropriate raise statements. Test your code with improperly formed expressions. 

Think of various ways you might save the animal knowledge tree in a file. Implement 

the one you think is easiest. 

 



 

Source: http://openbookproject.net/thinkcs/python/english2e/ch21.html 


