Sequences in Python

A sequence is an ordered collection of data values. Unlike a pair, which has exactly two
elements, a sequence can have an arbitrary (but finite) number of ordered elements.

The sequence is a powerful, fundamental abstraction in computer science. For
example, if we have sequences, we can list every university in the world, or every
student in every university. The sequence abstraction enables the thousands of data-
driven programs that impact our lives every day.

A sequence is not a particular abstract data type, but instead a collection of behaviors
that different types share. That is, there are many kinds of sequences, but they all share
certain properties. In particular,

Length. A sequence has a finite length.

Element selection. A sequence has an element corresponding to any non-negative
integer index less than its length, starting at O for the first element.

Unlike an abstract data type, we have not stated how to construct a sequence. The
sequence abstraction is a collection of behaviors that does not fully specify a type (i.e.,
with constructors and selectors), but may be shared among several types. Sequences
provide a layer of abstraction that may hide the details of exactly which sequence type
is being manipulated by a particular program.

In this section, we introduce built-in Python types that implement the sequence
abstraction. We then develop our own abstract data type that can implement the same
abstraction.


http://inst.eecs.berkeley.edu/~cs61A/book/chapters/objects.html#id10

Tuples

In fact, the tuple type that we introduced to form primitive pairs is itself a full sequence
type. Tuples provide substantially more functionality than the pair abstract data type that
we implemented functionally.

Tuples can have arbitrary length, and they exhibit the two principal behaviors of the
sequence abstraction: length and element selection. Below, digits is a tuple with four
elements.

>>> digits = (1, 8, 2, 8)
>>> len(digits)

4

>>> digits[3]

8

Additionally, tuples can be added together and multiplied by integers. For tuples,
addition and multiplication do not add or multiply elements, but instead combine and
replicate the tuples themselves. That is, the add function in the operator module (and
the +operator) returns a new tuple that is the conjunction of the added arguments.
The mul function in operator (and the * operator) can take an integer k and a tuple and
return a new tuple that consists of k copies of the tuple argument.

>>> (2, 7) + digits * 2
2, 7, 1,8, 2,8,1, 8, 2, 8)

Mapping. A powerful method of transforming one tuple into another is by applying a
function to each element and collecting the results. This general form of computation is
called mapping a function over a sequence, and corresponds to the built-in functionmap.
The result of map is an object that is not itself a sequence, but can be converted into a
sequence by calling tuple, the constructor function for tuples.

>>> alternates = (-1, 2, -3, 4, -5)
>>> tuple(map(abs, alternates))
a, 2, 3, 4, 5


http://inst.eecs.berkeley.edu/~cs61A/book/chapters/objects.html#id11

The map function is important because it relies on the sequence abstraction: we do not
need to be concerned about the structure of the underlying tuple; only that we can
access each one of its elements individually in order to pass it as an argument to the
mapped function (abs, in this case).

Multiple assignment and return values. In Chapter 1, we saw that Python allows
multiple names to be assigned in a single statement.

>>> from math Import pi

>>> radius = 10

>>> area, circumference = pi * radius * radius, 2 * pi *
radius

>>> area

314.1592653589793

>>> circumference

62.83185307179586

We can also return multiple values from a function.

>>> def divide_exact(n, d):
returnn // d, n % d
>>> quotient, remainder = divide_exact(10, 3)
>>> quotient
3
>>> remainder
1

Python actually uses tuples to represent multiple values separated by commas. This is
called tuple packing.

>>> digits = 1, 8, 2, 8
>>> digits

(1, 8, 2, 8)
>>> divide_exact(10, 3)
G, 1)

Using a tuple to assign to multiple names is called, as one might expect, tuple
unpacking. The names may or may not be enclosed by parentheses.



>>> d0, dl1, d2, d3 = digits

>>> d2

2

>>> (quotient, remainder) = divide_exact(10, 3)
>>> quotient

3

>>> remainder

1

Multiple assignment is just the combination of tuple packing and unpacking.

Arbitrary argument lists. Tuples can be used to define a function that takes in an
arbitrary number of arguments, such as the built-in print function. We precede a
parameter name with a * to indicate that an arbitrary number of arguments can be
passed in for that parameter. Python automatically packs those arguments into a tuple
and binds the parameter name to that tuple..

>>> def add_all(*args):
"""""Compute the sum of all arguments.
total, index = 0, O
while index < len(args):
total = total + args[index]
index = index + 1
return total
>>> add_all(l, 3, 2)
6

In addition, we can use the * operator to unpack a tuple to pass its elements as
separate arguments to a function call.

>>> pow(*(2, 3))
8

As can be seen here, tuples are used to provide many of the features that we have
been using in Python.

Source : http://inst.eecs.berkeley.edu/~cs61A/book/
chapters/objects.html#sequences


Parithy
Typewritten Text
Source : http://inst.eecs.berkeley.edu/~cs61A/book/chapters/objects.html#sequences


	Sequences in Python
	Tuples




