
Programming via Java Recursion 

We saw how to create methods in Chapter 12. Inside their bodies, we can include 

invocations of other methods. It may not have occurred to you, but you might reasonably 

wonder: Could a method invoke itself? 

Self-invocation may at first sound useless or illegal: Isn't this defining something in terms of 

itself — what is called a circular definition? But self-invocation is legally, and it's actually 

quite useful. In fact, it's so useful that it gets its own special name: recursion. We'll explore 

recursion in this chapter. 

17.1. A first example 

Let us begin with an example and see how it works. 

Figure 17.1: A Mystery program. 

  1  import acm.program.*; 

  2   

  3  public class Mystery extends Program { 

  4      public void run() { 

  5          int result = compute(4); 

  6          println(result); 

  7      } 

  8   

  9      public int compute(int n) { 

 10          if(n == 1) { 

 11              return 1; 

 12          } else { 

 13              return n * compute(n - 1); // here's the recursive invocation 

 14          } 

 15      } 

 16  } 

The program of Figure 17.1 defines compute, which is recursive because it invokes itself on 

line 13. Let's step through the program and see how it will work. 

1. run(): We start, of course, in the run method. This program immediately 

invokes compute with a parameter of 4. This will temporarily suspend work 

on run until the invocation compute(4) completes. 
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2. compute(4): With the parameter variable n having the value 4 as assigned, we run 

through compute. Since 4 isn't 1 (line 10), we go into the else clause. On line 13, we 

find we must invoke a method named compute with a parameter of 3. Thus, we 

temporarily suspend our work until this recursive invocation compute(3)completes. 

3. compute(3): We now run through compute with the parameter n being 3. Since 3 

isn't 1, we go into the else, where we find we must recursively invoke computewith a 

parameter of 2. Thus, we temporarily suspend our work until this recursive 

invocation compute(2) completes. 

4. compute(2): We now run through compute with the parameter n being 2. Since 2 

isn't 1, we go into the else, where we find we must recursively invoke computewith a 

parameter of 1. Thus, we temporarily suspend our work until this recursive 

invocation compute(1) completes. 

5. compute(1): We now run through compute with the parameter n being 1. Since 

the if condition is turns out to be true, we go to line 11, which say we should return 

1. This completes the invocation to compute(1). 

6. compute(2): We had previously suspended the invocation of compute(2) at line 13 

until compute(1) completed. It has now finished, so we pick up where we left off at 

line 13. This line says to return n * compute(n - 1). We just finished with 

determining that compute(n - 1) returns a value of 1, so we now want to 

returnn * 1. Since n has a value of 2 in this current invocation of compute, we end up 

returning the value of 2 * 1, which is 2. 

7. compute(3): We had suspended the invocation of compute(3) at line 13 

until compute(2) completed. It has now finished, returning a value of 2. We are to 

returnn * compute(n - 1). Since n has a value of 3 in this invocation of compute, 

and we just finished with determining that compute(n - 1) has a value of 2, we 

return 6 (that is, 3 ⋅ 2). 

8. compute(4): We had suspended the invocation of compute(4) at line 13 

until compute(3) completed. It has now finished, returning a value of 6. We are to 

returnn * compute(n - 1). Since n has a value of 4 in this invocation of compute, 

and we just finished with determining that compute(n - 1) has a value of 6, we 

return 24 (that is, 4 ⋅ 3). 

9. run(): We had suspended the invocation of run() at line 5 

until compute(4) completed. It has now finished, returning a value of 24. Thus, we 

assign the resultvariable to refer to 24 and we continue to the next line, which will 

display 24 for the user to see. 

What this program manages to do is to display the value of 4 ⋅ (3 ⋅ (2 ⋅ 1)). That is, it displays 

the product of the numbers from 4 down to 1. More generally, what thiscompute method 

does is to return the product of all the integers between 1 and its parameter n. 

Mathematicians call this product the factorial of n, and indeed the program would be 



better if its compute method were given the more descriptive name of factorial — but then 

what it does wouldn't be much of a mystery any more for those who knew the term. 

17.2. How recursion works 

You'll notice that the compute method doesn't always recur: When its parameter n is 1, the 

method simply returns immediately without any recursive invocations. 

With a bit of thought, you'll realize that any functional recursive method must have such a 

situation, since otherwise, the recursive method will never finish. In fact, these situations 

are important enough to merit a special term: Any condition where a recursive method does 

not invoke itself is called a base case. 

But what exactly happens when a recursive method lacks a base case? To understand this, 

we need to get some idea about how a computer handles method invocations. 

In executing a program, the computer creates what is called the program stack. The 

program stack is a stack of frames, each frame corresponding to a method invocation. At 

all times, the computer works on executing whichever method is at the stack's top; but when 

there is a method invocation, the computer creates a new frame and places it atop the stack. 

When the method at the stack's top returns, the computer removes that method's frame 

from the stack's top, and resumes its work on the method now on the frame's top. (This 

removal process is sometimes called popping the stack; the addition process (when a 

method invocation takes place) is sometimes called pushing.) 

To see how this works, let's diagram how the Mystery program operates. 

1. 

 

To start off the program, the program pushes a frame 

corresponding to an invocation to run(). Notice how this frame 

includes room forrun's variable result. 



2. 

 

When the computer sees that run() invokes compute(4), the 

computer places a new frame atop the stack corresponding 

to compute; this frame will include the variable n, whose value is 

initially 4. 

3. 

 

When the computer sees that compute(4) invokes compute(3), 

the computer places a new frame atop the stack, containing the 

variable n, whose value is initially 3. 

4. 

 

When the computer sees that compute(3) invokes compute(2), 

the computer places a new frame atop the stack, containing the 

variable n, whose value is initially 2. 



5. 

 

When the computer sees that compute(2) invokes compute(1), 

the computer places a new frame atop the stack, containing the 

variable n, whose value is initially 1. 

6. 

 

When the computer sees that compute(1) returns, it pops the 

top frame off the stack and resumes with whatever frame is now 

at the top — which happens to be the frame for compute(2). 



7. 

 

When the computer sees that compute(2) returns, it pops the 

top frame off the stack and resumes with compute(3). 

8. 

 

When the computer sees that compute(3) returns, it pops the 

top frame off the stack and resumes with compute(4). 

9. 

 

When the computer sees that compute(4) returns, it pops the 

top frame off the stack and resumes with run(). 

The run() invocation assigns the valued returned to 

its result variable, which modifies the variable in its frame. 

10. 

 

As the computer executes the method atop the stack, run, it sees 

that the method invokes print. It thus pushes print(24) onto 

the stack. In fact, print will push additional methods onto the 

stack, which are all eventually popped off. 



11. 

 

Once print returns, the computer pops its frame off the stack 

and continues executing run. In fact, run will return promptly 

(since there is nothing else to do in that method). Thus, its 

frame will be popped off, too. Once the stack is empty, the 

computer halts execution of the program. 

So what happens if a recursive method never reaches a base case? The stack will never stop 

growing. The computer, however, limits the stack to a particular height, so that no program 

eats up too much memory. If a program's stack exceeds this size, the computer initiates an 

exception, which typically would crash the program. (From the operating system's point of 

view, crashing the program is preferable to allowing a program to eat up too much memory 

and interfere with other better-behaved programs that may be running.) The exception is 

labeled a StackOverflowError. 

So any time you see a StackOverflowError, the most likely cause is that there is some sort 

of recursion going on, and that recursion never reaches a base case. In fact, this would occur 

with the Mystery program if we simply the 4 in line 5 to a 0. 

17.3. Recursion versus iteration 

You may object: How is this useful? I could just as easily have written the program using a 

loop! 

public class Factorial extends Program { 

    public void run() { 

        int n = 4; 

        int result = 1; 

        while(n > 0) { 

            result *= n; 

            n--; 

        } 

        println(result); 

    } 

} 



Indeed, you could. And indeed, most professional programmers would prefer that you did. 

Thus, while you might acknowledge that the Mystery program works, it just doesn't provide 

any evidence that recursion can be useful. In Chapter 18, we'll see some examples where 

recursion is indeed the best way to approach a problem. But before looking at those 

examples, we still have more to do as far as solidifying our understanding of recursion. 

But this objection brings up another important point: Recursion and loops are actually 

related concepts. Generally, anything you can do with a loop, you can do with recursion, and 

vice versa. Sometimes one way is simpler to write, and sometimes the other is, but in 

principle they are interchangeable. In fact, some programming languages don't even have 

any loops (such as Haskell), and other programming languages don't permit recursion 

(FORTRAN 77). Nonetheless, people manage to write sophisticated programs using them. 

Most modern languages in wide use, though, take the position that programmers ought to 

be able to choose which is most appropriate for the problem. 

It's useful for us to take some programs using a loop and to see how to rewrite them using 

recursion. I'd quickly admit that these aren't compelling examples for why recursion is 

useful, since the programs would be more simply written using a loop. But such examples 

really are the best with which to start learning about how to write recursive methods. 

17.3.1. Reversing a string 

We begin with our earlier program that reads a line from the user and displays it in reverse 

order. 

Figure 17.2: The Reverse program. 

  3  public class Reverse extends Program { 

  4      public void run() { 

  5          String str = readLine("Type a string to reverse: "); 

  6          int index = str.length() - 1; 

  7          while(index >= 0) { 

  8              print(str.substring(index, index + 1)); 

  9              index--; 

 10          } 

 11      } 

 12  } 

Our goal is to remove the usage of the while loop and to replace it with a recursive method. 

To do this, we'll need to introduce a new method, which we'll callprintReverse. 
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public class ReverseRecur extends Program { 

    public void run() { 

        String line = readLine("Type a string to reverse: "); 

        printReverse(line); 

    } 

 

    public void printReverse(String str) { 

    } 

} 

Now the question is how to write the body of this method. To do this, we'll rely on what I'll 

call the magical assumption: 

Magical Assumption: Assume that our recursive method already magically works for all 

smaller instances of the parameter. 

In our case, we're writing printReverse so that it prints the parameter string str in reverse. 

The magical assumption will be that printReverse will somehow work for all strings that 

are shorter than str. In continuing, then, we'll ask: How can we use this assumption to print 

all of str in reverse? 

Of course! I hope you respond (or at least you will with some more practice). What we 

should do is to first print the last letter of str, then we apply the magical assumption 

to str with the last letter removed! For example, if we have str referring to the 

string straw, our method will first display the last letter w, then recursively invoke the 

method on stra. Since stra has fewer letters than straw, this recursive invocation (says our 

magical assumption) will displays its reverse arts, thus completing the output of warts. 

This approach translates into the following code. 

print(str.substring(str.length() - 1)); 

printReverse(str.substring(0, str.length() - 1)); 

(Incidentally, you might have responded that we should first apply the magical assumption 

to str with the first letter removed (traw), then finally to print the first letter (s). That is 

also a valid response, and I'm not going to get caught up arguing which is better.) 

But this approach doesn't entirely work: The program is missing a base case. For this, we 

wonder: What's the smallest possible parameter? Of course, it would be a string with no 

letters in it at all. And in that case, we don't want to display anything. We use this to build 

our final program in Figure 17.3. 
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Figure 17.3: A recursive version of Reverse. 

  3  public class ReverseRecur extends Program { 

  4      public void run() { 

  5          String line = readLine("Type a string to reverse: "); 

  6          printReverse(line); 

  7      } 

  8   

  9      public void printReverse(String str) { 

 10          if(!str.equals("")) { 

 11              print(str.substring(str.length() - 1)); 

 12              printReverse(str.substring(0, str.length() - 1)); 

 13          } 

 14      } 

 15  } 

Note that the test in line 10 tests to see whether the base case does not apply. I wrote it this 

way because, in the case that the base case does apply, we don't want to do anything. It 

would look odd to have an if statement without anything in its braces and then 

an else clause, so instead I inverted the condition: If the string isn'tempty, then we do the 

recursion. 

Of course, we wrote this thinking solely in terms of our magical assumption, which doesn't 

immediately convince us that the program will work. But it does. 

1. Given the parameter straw, the method displays an w and invokes itself recursively 

with the parameter stra. 

2. That recursive invocation (with stra as a parameter) displays an a and invokes itself 

recursively with the parameter str. 

3. That recursive invocation (with str) displays an r and invokes itself recursively with 

the parameter st. 

4. That recursive invocation (with st) displays a t and invokes itself recursively with the 

parameter s. 

5. That recursive invocation (with s) displays an s and invokes itself recursively with an 

empty string as a parameter. 

6. That recursive invocation (with an empty string) does nothing. 

7. As each of the recursive invocations picks up where it left off, they have nothing more 

to do. 

The overall result is that the program has displayed warts as required. 



17.3.2. Counting letters 

Let's do another example. Suppose I want to count the number of r's in a string typed by the 

user. (Remember, the useful examples are coming later….) We can do this using iteration 

easily enough. 

Figure 17.4: The CountRs program. 

  3  public class CountRs extends Program { 

  4      public void run() { 

  5          String str = readLine("Type a string to analyze: "); 

  6          int index = 0; 

  7          int count = 0; 

  8          while(index < str.length()) { 

  9              if(str.substring(index, index + 1).equals("r")) { 

 10                  count++; 

 11              } 

 12              index--; 

 13          } 

 14          println("There are " + count + " r's."); 

 15      } 

 16  } 

This time, when we convert it to a recursive method taking a string as a parameter, it will be 

a method that returns an integer. This is so that the run method will be able to receive an 

integer that it can then display. 

public class CountRs extends Program { 

    public void run() { 

        String line = readLine("Type a string to analyze: "); 

        int count = countRs(line); 

        println("There are " + count + " r's."); 

    } 

 

    public void countRs(String str) { 

    } 

} 

To write the recursive countRs method, we again apply the magical assumption: We have a 

parameter named str, but we suppose that any invocation of countRs on a string shorter 

than str somehow manages to return the numbers of r's in that shorter string. This leads to 



an implementation where we examine the first letter of the string to see if it is an r, and then 

use a recursive invocation to count the r's in the remainder of the string. 

int k = 0; 

if(str.substring(0, 1).equals("r")) { 

    k++; 

} 

k += countRs(str.substring(1)); 

return k; 

Once again, though, we're missing the base case, which is when the string is empty. In that 

case, we want to return 0. We conclude with the full, working implementation. 

Figure 17.5: A recursive version of CountRs. 

  3  public class CountRs extends Program { 

  4      public void run() { 

  5          String line = readLine("Type a string to analyze: "); 

  6          int count = countRs(line); 

  7          println("There are " + count + " r's."); 

  8      } 

  9   

 10      public void countRs(String str) { 

 11          if(str.equals("")) { 

 12              return 0; 

 13          } else { 

 14              int k = 0; 

 15              if(str.substring(0, 1).equals("r")) { 

 16                  k++; 

 17              } 

 18              k += countRs(str.substring(1)); 

 19              return k; 

 20          } 

 21      } 

 22  } 

17.3.3. Perfect numbers 

A positive integer is said to be perfect if the sum of its factors (excluding the integer itself) 

is that integer. For example, 6 is perfect, since the numbers that divide into it exactly are 1, 



2, 3, and 6, and the sum of 1, 2, and 3 is itself 6. So also is 28 perfect: Its factors are 1, 2, 4, 7, 

14, and 28, and 1 + 2 + 4 + 7 + 14 = 28. 

Suppose we want a program to determine whether a number is perfect. We could do it easily 

enough using a loop. 

Figure 17.6: The Perfect program. 

  3  public class Perfect extends Program { 

  4      public void run() { 

  5          int query = readInt("Type an integer: "); 

  6          int index = 1; 

  7          int sum = 0; 

  8          while(index < query) { 

  9              if(query % index == 0) { 

 10                  sum += index; 

 11              } 

 12              index++; 

 13          } 

 14          if(sum == query) { 

 15              println(query + " is perfect"); 

 16          } else { 

 17              println(query + " isn't perfect: The sum is " + sum); 

 18          } 

 19      } 

 20  } 

But of course, for the sake of practice, we want to write this using recursion instead. We 

start by writing our recursive method. 

  3  public class PerfectRecur extends Program { 

  4      public void run() { 

  5          int query = readInt("Type an integer: "); 

  6          int sum = sumFactors(query); 

  7          if(sum == query) { 

  8              println(query + " is perfect"); 

  9          } else { 

 10              println(query + " isn't perfect: The sum is " + sum); 

 11          } 

 12      } 

 13   



 14      public int sumFactors(int num) { 

 15      } 

 16  } 

But now we hit a brick wall: Try as we might, the magical assumption just doesn't help us. 

Knowing the sum of the factors up to 1, 2, 3, 4, and 5 just doesn't help with determining the 

sum of the factors up to 6. 

The way over this brick wall is to introduce an additional parameter for our recursive 

method. This additional parameter will correspond to the index variable in our initial loop-

based solution. 

  3  public class PerfectRecur extends Program { 

  4      public void run() { 

  5          int query = readInt("Type an integer: "); 

  6          int sum = sumFactorsTo(query, query - 1); 

  7          if(sum == query) { 

  8              println(query + " is perfect"); 

  9          } else { 

 10              println(query + " isn't perfect: The sum is " + sum); 

 11          } 

 12      } 

 13   

 14      public int sumFactorsTo(int num, int max) { 

 24      } 

 25  } 

This helps to put us back on track: Given a query of 6, this code will 

invoke sumFactorsTo with two parameters, 6 and 5, with the intent of summing all the 

factors of 6 between 1 and 5 — or, more generically, given the two parameters num and max, 

the method should return the sum of the factors of num between 1 and max. To do this, we'll 

first determine the sum of all the factors of num between 1 and max − 1; we can do this 

utilizing the magical assumption, since max − 1 is smaller than max. Then we can add max if it 

itself is a factor of num and return that. 

Again, though, we need to worry about the base case. As we descend into the recursion, each 

layer has max being 1 smaller than before. Once it reaches 0, we should descend no further: 

This will be our base case. In this case, there are no numbers between 1 and 0, so we'll 

return 0. 

All the above reasoning is encoded in the program of Figure 17.7. 
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Figure 17.7: A recursive version of Perfect. 

  3  public class PerfectRecur extends Program { 

  4      public void run() { 

  5          int query = readInt("Type an integer: "); 

  6          int sum = sumFactorsTo(query, query - 1); 

  7          if(sum == query) { 

  8              println(query + " is perfect"); 

  9          } else { 

 10              println(query + " isn't perfect: The sum is " + sum); 

 11          } 

 12      } 

 13   

 14      public int sumFactorsTo(int num, int max) { 

 15          if(index == 0) { 

 16              return 0; 

 17          } else { 

 18              int sub = sumFactorsTo(num, max - 1); 

 19              if(num % max == 0) { 

 20                  sub += max; 

 21              } 

 22              return sub; 

 23          } 

 24      } 

 25  } 
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