
Implementing Lists and Dictionaries in
Python

Lists are sequences, like tuples. The Python language does not give us access to the
implementation of lists, only to the sequence abstraction and the mutation methods we
have introduced in this section. To overcome this language-enforced abstraction barrier,
we can develop a functional implementation of lists, again using a recursive
representation. This section also has a second purpose: to further our understanding of
dispatch functions.

We will implement a list as a function that has a recursive list as its local state. Lists
need to have an identity, like any mutable value. In particular, we cannot use None to
represent an empty mutable list, because two empty lists are not identical values (e.g.,
appending to one does not append to the other), but None is None. On the other hand,
two different functions that each haveempty_rlist as their local state will suffice to
distinguish two empty lists.

Our mutable list is a dispatch function, just as our functional implementation of a pair
was a dispatch function. It checks the input "message" against known messages and
takes an appropriate action for each different input. Our mutable list responds to five
different messages. The first two implement the behaviors of the sequence abstraction.
The next two add or remove the first element of the list. The final message returns a
string representation of the whole list contents.

>>> def mutable_rlist():
 """Return a functional implementation of a
mutable recursive list."""
 contents = empty_rlist
 def dispatch(message, value=None):
 nonlocal contents
 if message == 'len':
 return len_rlist(contents)
 elif message == 'getitem':
 return getitem_rlist(contents, value)

 elif message == 'push_first':
 contents = rlist(value, contents)
 elif message == 'pop_first':
 f = first(contents)
 contents = rest(contents)
 return f
 elif message == 'str':
 return str(contents)
 return dispatch

We can also add a convenience function to construct a functionally implemented
recursive list from any built-in sequence, simply by adding each element in reverse
order.

>>> def to_mutable_rlist(source):
 """Return a functional list with the same
contents as source."""
 s = mutable_rlist()
 for element in reversed(source):
 s('push_first', element)
 return s

In the definition above, the function reversed takes and returns an iterable value; it is
another example of a function that uses the conventional interface of sequences.

At this point, we can construct a functionally implemented lists. Note that the list itself is
a function.

>>> s = to_mutable_rlist(suits)
>>> type(s)
<class 'function'>
>>> s('str')
"('heart', ('diamond', ('spade', ('club', None))))"

In addition, we can pass messages to the list s that change its contents, for instance
removing the first element.

>>> s('pop_first')
'heart'
>>> s('str')

"('diamond', ('spade', ('club', None)))"

In principle, the operations push_first and pop_first suffice to make arbitrary changes
to a list. We can always empty out the list entirely and then replace its old contents with
the desired result.

Message passing. Given some time, we could implement the many useful mutation
operations of Python lists, such as extendand insert. We would have a choice: we
could implement them all as functions, which use the existing
messages pop_firstand push_first to make all changes. Alternatively, we could add
additional elif clauses to the body of dispatch, each checking for a message
(e.g., 'extend') and applying the appropriate change to contents directly.

This second approach, which encapsulates the logic for all operations on a data value
within one function that responds to different messages, is called message passing. A
program that uses message passing defines dispatch functions, each of which may
have local state, and organizes computation by passing "messages" as the first
argument to those functions. The messages are strings that correspond to particular
behaviors.

One could imagine that enumerating all of these messages by name in the body
of dispatch would become tedious and prone to error. Python dictionaries, introduced in
the next section, provide a data type that will help us manage the mapping between
messages and operations.

Implementing Dictionaries. We can implement an abstract data type that conforms to
the dictionary abstraction as a list of records, each of which is a two-element list
consisting of a key and the associated value.

>>> def dictionary():
 """Return a functional implementation of a
dictionary."""
 records = []
 def getitem(key):
 for k, v in records:
 if k == key:

 return v
 def setitem(key, value):
 for item in records:
 if item[0] == key:
 item[1] = value
 return
 records.append([key, value])
 def dispatch(message, key=None, value=None):
 if message == 'getitem':
 return getitem(key)
 elif message == 'setitem':
 setitem(key, value)
 elif message == 'keys':
 return tuple(k for k, _ in records)
 elif message == 'values':
 return tuple(v for _, v in records)
 return dispatch

Again, we use the message passing method to organize our implementation. We have
supported four messages: getitem,setitem, keys, and values. To look up a value for a
key, we iterate through the records to find a matching key. To insert a value for a key,
we iterate through the records to see if there is already a record with that key. If not, we
form a new record. If there already is a record with this key, we set the value of the
record to the designated new value.

We can now use our implementation to store and retrieve values.

>>> d = dictionary()
>>> d('setitem', 3, 9)
>>> d('setitem', 4, 16)
>>> d('getitem', 3)
9
>>> d('getitem', 4)
16
>>> d('keys')
(3, 4)
>>> d('values')
(9, 16)

This implementation of a dictionary is not optimized for fast record lookup, because
each response to the message 'getitem'must iterate through the entire list of records.
The built-in dictionary type is considerably more efficient.

Parithy
Typewritten Text
Source : http://inst.eecs.berkeley.edu/~cs61A/book/chapters/objects.html#implementing-lists-and-dictionaries

	Implementing Lists and Dictionaries in Python

