
Hierarchical State Machines in the
Automation Process

1. Introduction

Often during the process of supporting, modifying or re-engineering automation

software, I have found myself making the same conclusion: “This is a Hierarchical State

Machine trapped in the body of a C program, struggling to get out!” It seems that many

programmers tackle a problem in the A to Z approach, whereby they say “First, you

need to do this, second, this, … and finally this.” This creates a program that is chained

to the original programmer’s concept of how the process is to be automated, which often

times does not agree with the next person’s view, nor the next, etc… The result is a

system that is difficult to support, suffers from instability, and is difficult to add or

modify functionality.

My experience has led me to develop a methodology, set of class libraries and finally a

sophisticated Interactive Development Environment (IDE) to quickly model an

automation process as a Finite State System composed of Hierarchical State Machines.

Systems developed this way are very stable, easy for new programmers to support, and

are relatively simple to add features and functionality. This article will introduce you to

the concept of a Hierarchical State Machine (HSM) and show you how this approach

works so well in software engineering for the automation industry.

2. Cost Benefit Analysis

Before investigating the technical details of a HSM based solution, a brief discussion of

the cost of implementation vs. investment return is in order. The following lists detail the

costs and benefits:

Costs

• Increased initial development time
• Longer learning curve for new developers

Benefits
• Ease of modeling and developing new applications
• Ease of maintaining running system
• Ease of modifying existing system to address new business requirements
• Ease of modifying existing system to address environmental effects

• Reuse of code base
Implementing a HSM solution for the first time involves (naturally) a learning curve. This

involves developing an understanding of the class framework, support modules and

application structure that would not be present if you were developing from scratch. Of

course, if this were the case, you probably would be writing your own framework and set

of support modules as development progresses. Once the developers learn the class

framework and support modules, development can proceed at a fixed pace, with no

unforeseen major code rewrites anticipated.
Once one or two such systems have been deployed, subsequent development efforts are

greatly reduced by simply re-using the existing framework and code base, and perhaps

reusing code from other running HSM solutions. Furthermore, developers who have

supported one such application can easily see and understand HSM based systems

written by other developers.

When business requirements or environmental effects dictate that an existing HSM

based system be modified, the greatest benefit is obtained. In a monolithic approach,

developers are required to “shoehorn” the code supporting the operational changes into

the existing structure, often times requiring wide-reaching changes in the application.

This brute-force approach, when applied repeatedly, often times results in unsupportable

code that eventually will require a rewrite. HSM based systems are easily modifiable to

support changing requirements, due to their modular structure and table based logic.

Modifications are accomplished by first, modifying the state machine table definitions to

address the change requirements, and second, filling in the stub routines.

Here are two hypothetical examples of how a HSM based solution can save time, money

and frustration.

New Application
In a new application development, the analysis is performed detailing the input signals,

output to controls, timing issues, interactivity among components, etc… The output of

this effort can be modeled by generating a series of Finite State Machine definitions,

which directly result in code, in the form of header files defining the machines, and stub

routines requiring completion. Existing applications can be borrowed from to fill out

some of the stubs. Testing can proceed, which focuses on the overall behavior and

specifically on the code added to the stub routines. The resulting application can be

easily understood by a developer who has supported other HSM based applications.

Modification to Existing Application

Modifications after implementation usually involve unforeseen effects on a system

imposed by environment. An example would be a computer located in a “noisy” area,

one subject to interference, vibration, dust, etc… Consider a sensor that is used to detect

product entering a material handling system. It’s purpose is to detect an object and

serve as a starting point for a timer that is used to position the object on the conveyor

for electro-mechanical processing, for example, label application.

After implementation, it is found that the system is not behaving as expected. An

analysis results in the conclusion that the sensor is returning false clear indications after

it returns a block indication. This can be due to electro-magnetic noise, reflective surface

on the object, or any unforeseen effect.

The solution to this problem, assuming that the physical cause cannot be addressed, is

to add logic to filter out unrealistic signals from the real ones. Here, the HSM structure

can be easily modified to implement sanity timers in the process. That is, after a clear

indication, if a block occurs in less than 50 milliseconds, the assumption can be made

that it is a false clear. This kind of timer can be easily implemented by modifying the

state table to add a new timer, and few events and action routines. Supporting this in a

monolithic design would clearly be a much greater effort.

3. Example of a Finite State Machine (Garage Door)

Most readers probably have a good idea of what a Finite State Machine (FSM) is. For

those who don’t, we’ll look at a simple example that we’ve all encountered at one time

or another – the automatic garage door. The garage door in question has a remote

opener/closer, a motor to drive the door through its opening and closing states and a

photo-eye to detect a foreign object in the path of the closing door. In addition, there

are switches that trip when the door is fully opened and fully closed.

A finite state machine consists of four components

• States – A set of states in which the system can exist
• Events – Meaningful occurrences that affect the system
• Actions – Operations taken when an event occurs
• Transitions – Changes from one state to another brought about by events

Let’s define each for this example.

The states of this FSM are Opened, Closed, Closing and Opening.

The events are:
• Signal received from remote
• Open door switch activated
• Closed door switch activated
• Photo-eye blocked

The actions are Open Door, Close Door and Stop Motor.

The transitions are defined in the following table, which rolls all of the components into a

complete definition of the finite state machine. This table is referred to as a State

Transition Table.

State Event Action New State

Open Signal Received Close Door Closing
Closing Closed door

switch
Stop Motor Closed

Closing Photo-eye blocked Open Door Opening
Opening Open door switch Stop Motor Open
Closed Signal Received Open Door Opening

Another way to visualize a finite state machine is via a State Transition Diagram. There

are many versions of this diagram, featuring different symbols for the states. In our

diagram, states are represented by circles, transitions by arrows from one circle to

another (or even one circle to itself), and events and actions are indicated by captions

within the diagram.

Figure1. Garage Door Finite State Diagram

You can see that this is a very simple Finite State Machine. Automation processes are

usually modeled by much more complex state machines than this.

Let’s get a bit more complex and consider some exception conditions. For example, what

would happen if the close door or open door switch malfunctioned causing no indication

to be received that the door was closed or opened. Well I would imagine that the motor

would run forever and eventually burn up. We can address this by adding a new event

and re-defining some actions. To protect against this, we will define the maximum time

that the motor needs to run to open the door, and also to close the door. When we start

opening or closing the door, we will start the timer. When a close door switch or open

door switch is detected, we not only stop the motor, we also kill the timer. If the timer

expires before the switch is tripped, we stop the motor (and to be really responsible,

send an alert message so that the switch can be fixed). Here’s what our table looks like

now:

State Event Action New State

Open Signal Received Close Door, Start Timer Closing

Closing Closed door switch Stop Motor, Stop Timer Closed

Closing Photo-eye blocked Open Door, Restart Timer Opening

Closing Timer Popped Stop Motor, Signal Error Closed

Opening Open door switch Stop Motor, Stop Timer Open

Opening Timer Popped Stop Motor, Signal Error Open

Closed Signal Received Open Door, Start Timer Opening

The lesson here is that using a finite state machine to model the software

implementation driving the electric garage door enabled us to quickly address a problem

that was not dealt with in the initial implementation. Using a monolithic approach to this

project would have rendered this modification far more difficult.

4. The Next Step: Finite State System

Admittedly, the garage door example is simplistic and one that doesn’t push the

envelope as far as advanced controls are concerned, but it serves us well in illustrating

how a state machine approach benefits the development effort. Let’s take it to the next

level and inject some complexity. If the state machine that models a real-world process

gets too complex to fathom for most mortals, it’s time to add some structure…

4.1 The Hierarchical Approach
One way to simplify a very complex finite state system is to break it down into

reasonable sized chunks, each doing a specific task or set of tasks, and each concerned

only with its charter. The relationship among components varies, but invariably there is

a hierarchical relationship involved. In such a case, you have a single FSM that controls

its “children”. Child FSM’s may not resemble one another, or they may be multiple

instances of the same FSM. The former might include an assembly line process where

each child FSM operates on an object, then that object is passed on to the next FSM, and

so on. The latter might include a series of identical FSM’s, each one acting on its own

assigned hardware component. Let’s consider how these FSM’s work together to create a

well-running system.

4.2 Controlling Multiple Identical Processes
Consider an application that directs containers to areas in a warehouse for picking or

put-away purposes. The containers are directed from their starting point to their

assigned zones by traveling a conveyor that branches out to serve each pick zone. At

each split there exists a barcode scanner and a diverter, which when activated directs

the container to the left, right or straight ahead. There are many such divert points, each

controlled by a single program. When a container is scanned, a decision must be made

within a short amount of time, perhaps 100 milliseconds, based on the following criteria:
• Is the container assigned to this zone
• Has the container already visited this zone
• Is the zone full to capacity

This application can be modeled with a Hierarchical State Machine consisting of one FSM

for each diverter, and a master FSM controlling each Diverter FSM. The finite state table

for a single diverter might look like this:

State Event Action New State

Waiting for Scan Scan Received Ask for Direction,
Start Divert Timer 1

Waiting for

Direction
Waiting for

Direction
Direction Received Store Direction Waiting to Divert

Waiting for

Direction
Timer Popped Alert Operator, Log error Waiting for Scan

Waiting to Divert Timer Popped Activate Diverter,
Start Divert Timer 2

Diverting

Diverting Timer Popped De-activate Diverter Waiting for Scan
Waiting for Scan Direction Received Log Error Waiting for Scan

This is a fairly simple FSM to control the divert process for a single diverter. Of interest

here is the use of timers to control the precise timing of the divert mechanism,

preventing a crash or jam on the conveyor. It is not enough to fire the diverter as soon

as the directions are received, as that time is not predictable. Also note that the FSM

addresses the potential of receiving divert instructions after the container has passed the

divert point, handling it as an exception condition.

This program however must control many diverters, not just one. This is where the

Master FSM comes in. It has three basic responsibilities – controlling startup, controlling

shutdown, and directing events to the proper diverter FSM’s. Worker threads will be

called upon by the diverter FSM’s to start a read operation on the scanners, and to

obtain divert instructions from the container data store. When the scanner IO completes,

or when the divert instructions are returned, that information, along with the identity of

the diverter to which the information is pertinent will be sent to the Master FSM for

processing. The Master FSM uses the identity of the diverter to issue an event to the

proper diverter FSM.

4.3 Controlling Sequential Processes
The previous example showed how a master FSM could control a series of identical child

FSM’s to control identical processes. Let’s look at an example where child FSM’s are all

different from one another. This example works like an assembly line. Each item is

processed in turn by different stations of the system. Each processing station is

independent of the others, performs a single task and releases the object for further

processing by the next station. The objects are fed through the system by conveyor belts

with photo-eyes positioned to allow precise positioning of the objects for processing by

each station.

As in the prior example, the Master FSM is responsible for controlling startup and

shutdown and for directing events to the proper child FSM’s. An additional responsibility

of the Master FSM is to control the movement of objects through the system. It prevents

an object from moving from one station to the next, until that station is ready to accept

a new object. Thus, an object in station 2 cannot move to station 3 until station 3’s

photo-eye is unblocked, indicating that there is room for a new object. The final station

will similarly hold objects until the out-take conveyor’s photo-eye is unblocked,

indicating that there is room on the conveyor for more accumulation.

Since we’re manufacturing widgets, it makes no sense to show the child FSM’s here,

however the master FSM is worth looking into. Here is its FSM definition:

State Event Action Ne

Uninitialized Startup Start Children Pen
Pending Initialization Initialization Timer Popped Check Child FSM Init Status Pen
Pending Initialization Initialization Complete Start Operation Timer Init
Initialized Process Timer Popped Check Child FSM Process Status Init
Initialized Shutdown Stop Children Pen
Pending Shutdown Shutdown Timer Popped Check Child FSM Shutdown Status Pen
Pending Shutdown Shutdown Complete Shutdown Master FSM Uni

This is fairly simple, but leaves a lot to the imagination. Let’s dig a little deeper into

some of the action routines. The first action routine Start Children does the following:
• Sends a startup event to each child FSM
• Starts the Initialization Timer

At this point, the master FSM is waiting for each child FSM to complete its initialization.

When the Initialization timer pops, Check Child FSM Init Status does the following:
• Check each child FSM status
• If all are initialized, send a Initialization Complete event to itself
• If not all are initialized, restart Initialization Timer

Once startup is complete, the master FSM periodically checks the progress of its child

FSM’s making sure each is busy if there is work to do. This occurs in Check Child FSM

Process Status, which does the following:
• Check each position, from last to process to first to process for ability to accept

work. Each station that is ready for work results in the next (earlier in process)

FSM being issued an Eject event, causing that device to activate its out-take

motor.
• Start Process Timer

Here, it is important to note that each child FSM controls its own photo-eyes, out-take

motors, etc… The only information exposed to the master FSM by the child FSM’s is

whether the child FSM can accept new work. In addition, the master FSM checks the

status of the out-take conveyor for the entire system to ensure that processing is

stopped when it is not accepting anything, i.e., motor stopped or photo eye blocked.

4.4 Summary
We have seen the flexibility of the two simple examples presented above. In the real

world processes are not always that simple. This approach can easily address much more

complex models, such as combinations of multiple identical FSM’s and sequential FSM’s.

In addition, we have seen only parent/child relationships so far. This approach can

address hierarchies to any level of depth.

5. How it All Fits Together

Up to this point, I’ve attempted to make a case for using Hierarchical State Machines to

develop software solutions for automation processes. If you want to know a bit more

about how it all fits together from a software development point of view, read on.

5.1 Distributed Processing
Not all automation processes can be addressed by a single hierarchical state machine.

Often, multiple programs on multiple computers are required. An example is a process

that requires a database lookup. It might not be feasible to distribute database drivers to

each computer in a facility, so addressing all database requests from one or more data

managers might be appropriate.

Communication among programs is handled by an interface class that implements socket

communication in the following flavors:
• Raw data over sockets
• SOAP encoded messages over sockets

In addition, the socket class can communicate using Secure Socket Layer (SSL) to

eliminate the potential of exposing sensitive data to prying eyes. Messages arriving from

external programs can be handled as events that drive the state machine hierarchy. For

example, a command from a Human Machine Interface requesting the application to

shutdown would be delivered to the highest-level FSM in the hierarchy as a Shutdown

event.

5.2 Real-time Solution
Since automation processes are typically very time-sensitive, this approach must

function as a real-time system. A real-time system is loosely defined as a system where

violation of time constraints produces catastrophic results. In the conveyor diverter

example described earlier, missing a time constraint results in a container being sent to

the wrong place, possibly affecting shipping schedules. Worse, it could cause an entire

shipping route to be delayed while the container is filled. Imagine the result if this were

not just a one-time occurrence but a common occurrence. This approach guarantees

real-time performance.

FSM Behavior
All Finite State Machines are serviced by a single processing thread. This is possible

because looking up an event in an event table, executing a well-written action routine

and transitioning to a new state is a very rapid process. Thousands of events can be

handled in a second if the action routines are well written. For that to occur, action

routines must never block on a resource. If an action results in a database lookup, file

I/O, or printing of a label, for example, that should be handed off to a worker thread for

completion in an asynchronous manner. While the worker thread is processing the

request, the FSM is free to process remaining events. Once the worker thread completes

its request, it issues an event to the top-level FSM, containing the identification of the

requesting FSM, the disposition of the request and any requested data. Event processing

logic within the hierarchy directs the event to the proper FSM.

Events issued to a FSM are queued in a First In, First Out basis. The FSM implementation

processes events repetitively until there are none to process. It then waits on a

semaphore that is signaled the next time an event is added to the stack. Additionally,

events can be placed on the front of the stack by specifying priority. This might be used

to handle an Emergency Stop event.

Structures
Finite state tables and event queues are implemented using the Standard Template

Library (STL), which is an open-source, platform independent set of template classes.

These classes are used to implement ordered lists in a variety of ways. STL classes are

invaluable in implementing volatile storage of relational data, providing the fastest

access possible to list elements. Since STL is based on the C++ standard library, it is

platform independent, supporting the ability to implement FSM solutions on all

platforms.

5.3 Class Library Approach
We have implemented a set of class libraries for use in Hierarchical State Machine

applications, which include the following:
• Finite State Machine – This is the ancestor class for all FSM subclasses

implementing a hierarchy. This class incorporates all finite state table

management, event processing, and error and status reporting from lowest to

highest in the hierarchy enabling one call to obtain all status and error messages

from all state machines.
• Thread Object – This class encapsulates a worker thread, including

synchronization objects for controlling startup and shutdown processing

sequence. The thread object is used to implement worker threads used by the

FSM’s to perform blocking and non-real-time processes.
• Communication Classes – Both secure and non-secure socket classes are

provided, with Simple Object Access Protocol (SOAP) capability. Additionally, a

worker thread pool class allows a limited set of threads to service I/O completion

on many socket connections. Since both sockets and SOAP are platform

independent, using the communication classes enables components written on

disparate platforms to communicate with each other.
5.4 IDE Eases Development Process
After putting a few of these under our belts, it became obvious that the initial setup time

for developing a new HSM based project was one of the most time consuming aspects of

the job. This step involves generating a C++ header file to define each finite state table

and each finite state machine. Next, generating the implementation files for each finite

state machine follows, with stubs for each action routine. Finally, putting all these

together in a hierarchy to relate all machines completes the setup. At this point, it’s time

to fill in the stubs to complete the implementation.

To speed up the setup process, we realized that it would be natural to define a

hierarchical state machine system using XML, which is well suited for specifying data in

hierarchical relationships. By writing an Interactive Development Environment (IDE) to

allow definition of hierarchy and FSM’s via a graphical user interface, the setup time is

minimized. FSM definitions and relationships are stored in a single XML file, and a post-

processor is utilized to convert the XML to actual C++ definition and implementation

files.

6. Conclusions
Time has proven that the Hierarchical State Machine model has provided the following

benefits to the development, maintenance and support of automation applications:
• The development cycle is shortened.
• Maintenance is simplified
• Stability is enhanced
• Changing business requirements are easy to address

Understanding this approach, one can see how these benefits are gained. Development

starts with a visual process. The process is defined in terms of manageable chunks of

logic, closely modeling the real world. State machines are defined and created using the

IDE, which allows the developer to easily see the state transitions in a tabular display.

Development continues with the filling out of stub routines. Testing is simplified via the

extensive logging capabilities, allowing state transitions to be viewed after the fact.

Maintenance is simplified by allowing failing logic to be identified and isolated. Changes

to address issues are limited to small, easily understandable chunks of code. New

programmers can easily understand the process by viewing the state machine in the

IDE, rather than having to pour through thousands of lines of code. With an easy to

maintain application also comes stability, which is high on the priority list of any

automation facility.

Business requirements can be addressed without causing a major ripple effect on the

application. States, events and action routines can be added easily, without causing

impacting other portions of the code, simply by modifying the state machine definition

and filling in new stubs.

Maintaining code libraries for multiple clients on a wide variety of applications would be a

nightmare without a unified, logical approach. “Necessity is the mother of invention”,

and in our case, the necessity of a sane way to support our customers has led us to

adopt the Hierarchical State Machine approach. Doing so has paid off, with each

successful implementation a validation of this approach.

This article was written by Steve Elliot of Copperline Consulting Services. Founded in

1991, Copperline has provided reliable, fast and scalable solutions to automate product

manufacturing and distribution processes for its client companies. Where others focus on

one area of the automation process, they have been successful in addressing automation

needs across the entire spectrum of technologies encountered in an automated facility.

Their integration specialists have the experience and knowledge to integrate the

business applications with the production facilities, to connect the back-office with the

factory floor. For more information on Copperline Consulting Services, please visit their

web site at www.copperlineinc.com

Source:

http://www.automation.com/library/articles-white-papers/process-control-process-
monitoring/hierarchical-state-machines-in-the-automation-process

http://www.copperlineinc.com/
http://www.automation.com/library/articles-white-papers/process-control-process-monitoring/hierarchical-state-machines-in-the-automation-process
http://www.automation.com/library/articles-white-papers/process-control-process-monitoring/hierarchical-state-machines-in-the-automation-process

	Hierarchical State Machines in the Automation Process

