
Hierarchical State Machines in the 
Automation Process 
  

1.    Introduction 

Often during the process of supporting, modifying or re-engineering automation 

software, I have found myself making the same conclusion: “This is a Hierarchical State 

Machine trapped in the body of a C program, struggling to get out!” It seems that many 

programmers tackle a problem in the A to Z approach, whereby they say “First, you 

need to do this, second, this, … and finally this.” This creates a program that is chained 

to the original programmer’s concept of how the process is to be automated, which often 

times does not agree with the next person’s view, nor the next, etc… The result is a 

system that is difficult to support, suffers from instability, and is difficult to add or 

modify functionality.  
  
My experience has led me to develop a methodology, set of class libraries and finally a 

sophisticated Interactive Development Environment (IDE) to quickly model an 

automation process as a Finite State System composed of Hierarchical State Machines. 

Systems developed this way are very stable, easy for new programmers to support, and 

are relatively simple to add features and functionality. This article will introduce you to 

the concept of a Hierarchical State Machine (HSM) and show you how this approach 

works so well in software engineering for the automation industry. 
  

2.     Cost Benefit Analysis 

Before investigating the technical details of a HSM based solution, a brief discussion of 

the cost of implementation vs. investment return is in order. The following lists detail the 

costs and benefits: 
  
Costs 

• Increased initial development time 
• Longer learning curve for new developers 

Benefits 
• Ease of modeling and developing new applications 
• Ease of maintaining running system 
• Ease of modifying existing system to address new business requirements 
• Ease of modifying existing system to address environmental effects 



• Reuse of code base 
Implementing a HSM solution for the first time involves (naturally) a learning curve. This 

involves developing an understanding of the class framework, support modules and 

application structure that would not be present if you were developing from scratch. Of 

course, if this were the case, you probably would be writing your own framework and set 

of support modules as development progresses. Once the developers learn the class 

framework and support modules, development can proceed at a fixed pace, with no 

unforeseen major code rewrites anticipated.  
Once one or two such systems have been deployed, subsequent development efforts are 

greatly reduced by simply re-using the existing framework and code base, and perhaps 

reusing code from other running HSM solutions. Furthermore, developers who have 

supported one such application can easily see and understand HSM based systems 

written by other developers. 
  
When business requirements or environmental effects dictate that an existing HSM 

based system be modified, the greatest benefit is obtained. In a monolithic approach, 

developers are required to “shoehorn” the code supporting the operational changes into 

the existing structure, often times requiring wide-reaching changes in the application. 

This brute-force approach, when applied repeatedly, often times results in unsupportable 

code that eventually will require a rewrite. HSM based systems are easily modifiable to 

support changing requirements, due to their modular structure and table based logic. 

Modifications are accomplished by first, modifying the state machine table definitions to 

address the change requirements, and second, filling in the stub routines. 
  
Here are two hypothetical examples of how a HSM based solution can save time, money 

and frustration. 
  
New Application 
In a new application development, the analysis is performed detailing the input signals, 

output to controls, timing issues, interactivity among components, etc… The output of 

this effort can be modeled by generating a series of Finite State Machine definitions, 

which directly result in code, in the form of header files defining the machines, and stub 

routines requiring completion. Existing applications can be borrowed from to fill out 

some of the stubs. Testing can proceed, which focuses on the overall behavior and 

specifically on the code added to the stub routines. The resulting application can be 

easily understood by a developer who has supported other HSM based applications. 
  
Modification to Existing Application 



Modifications after implementation usually involve unforeseen effects on a system 

imposed by environment. An example would be a computer located in a “noisy” area, 

one subject to interference, vibration, dust, etc… Consider a sensor that is used to detect 

product entering a material handling system. It’s purpose is to detect an object and 

serve as a starting point for a timer that is used to position the object on the conveyor 

for electro-mechanical processing, for example, label application.  
  
After implementation, it is found that the system is not behaving as expected. An 

analysis results in the conclusion that the sensor is returning false clear indications after 

it returns a block indication. This can be due to electro-magnetic noise, reflective surface 

on the object, or any unforeseen effect.  
  
The solution to this problem, assuming that the physical cause cannot be addressed, is 

to add logic to filter out unrealistic signals from the real ones. Here, the HSM structure 

can be easily modified to implement sanity timers in the process. That is, after a clear 

indication, if a block occurs in less than 50 milliseconds, the assumption can be made 

that it is a false clear. This kind of timer can be easily implemented by modifying the 

state table to add a new timer, and few events and action routines. Supporting this in a 

monolithic design would clearly be a much greater effort. 
  

3.     Example of a Finite State Machine (Garage Door) 

Most readers probably have a good idea of what a Finite State Machine (FSM) is. For 

those who don’t, we’ll look at a simple example that we’ve all encountered at one time 

or another – the automatic garage door. The garage door in question has a remote 

opener/closer, a motor to drive the door through its opening and closing states and a 

photo-eye to detect a foreign object in the path of the closing door. In addition, there 

are switches that trip when the door is fully opened and fully closed.  
  
A finite state machine consists of four components 

• States – A set of states in which the system can exist 
• Events – Meaningful occurrences that affect the system 
• Actions – Operations taken when an event occurs  
• Transitions – Changes from one state to another brought about by events 

Let’s define each for this example. 
  
The states of this FSM are Opened, Closed, Closing and Opening. 
  



The events are: 
• Signal received from remote 
• Open door switch activated 
• Closed door switch activated 
• Photo-eye blocked 

The actions are Open Door, Close Door and Stop Motor. 
  
The transitions are defined in the following table, which rolls all of the components into a 

complete definition of the finite state machine. This table is referred to as a State 

Transition Table. 
  

State Event Action New State 

Open Signal Received Close Door Closing 
Closing Closed door 

switch 
Stop Motor Closed 

Closing Photo-eye blocked Open Door Opening 
Opening Open door switch Stop Motor Open 
Closed Signal Received Open Door Opening 

  
Another way to visualize a finite state machine is via a State Transition Diagram. There 

are many versions of this diagram, featuring different symbols for the states. In our 

diagram, states are represented by circles, transitions by arrows from one circle to 

another (or even one circle to itself), and events and actions are indicated by captions 

within the diagram.  
  



 
Figure1. Garage Door Finite State Diagram 

  
You can see that this is a very simple Finite State Machine. Automation processes are 

usually modeled by much more complex state machines than this. 
  
Let’s get a bit more complex and consider some exception conditions. For example, what 

would happen if the close door or open door switch malfunctioned causing no indication 

to be received that the door was closed or opened. Well I would imagine that the motor 

would run forever and eventually burn up. We can address this by adding a new event 

and re-defining some actions. To protect against this, we will define the maximum time 

that the motor needs to run to open the door, and also to close the door. When we start 

opening or closing the door, we will start the timer. When a close door switch or open 

door switch is detected, we not only stop the motor, we also kill the timer. If the timer 

expires before the switch is tripped, we stop the motor (and to be really responsible, 

send an alert message so that the switch can be fixed). Here’s what our table looks like 

now: 
  

State Event Action New State 

Open Signal Received Close Door, Start Timer Closing 

Closing Closed door switch Stop Motor, Stop Timer Closed 



Closing Photo-eye blocked Open Door, Restart Timer Opening 

Closing Timer Popped Stop Motor, Signal Error Closed 

Opening Open door switch Stop Motor, Stop Timer Open 

Opening Timer Popped Stop Motor, Signal Error Open 

Closed Signal Received Open Door, Start Timer Opening 

  
The lesson here is that using a finite state machine to model the software 

implementation driving the electric garage door enabled us to quickly address a problem 

that was not dealt with in the initial implementation. Using a monolithic approach to this 

project would have rendered this modification far more difficult. 
  

4.     The Next Step: Finite State System 

Admittedly, the garage door example is simplistic and one that doesn’t push the 

envelope as far as advanced controls are concerned, but it serves us well in illustrating 

how a state machine approach benefits the development effort. Let’s take it to the next 

level and inject some complexity. If the state machine that models a real-world process 

gets too complex to fathom for most mortals, it’s time to add some structure…  
  
4.1     The Hierarchical Approach 
One way to simplify a very complex finite state system is to break it down into 

reasonable sized chunks, each doing a specific task or set of tasks, and each concerned 

only with its charter. The relationship among components varies, but invariably there is 

a hierarchical relationship involved. In such a case, you have a single FSM that controls 

its “children”. Child FSM’s may not resemble one another, or they may be multiple 

instances of the same FSM. The former might include an assembly line process where 

each child FSM operates on an object, then that object is passed on to the next FSM, and 

so on. The latter might include a series of identical FSM’s, each one acting on its own 

assigned hardware component. Let’s consider how these FSM’s work together to create a 

well-running system. 
  
4.2     Controlling Multiple Identical Processes 
Consider an application that directs containers to areas in a warehouse for picking or 

put-away purposes. The containers are directed from their starting point to their 

assigned zones by traveling a conveyor that branches out to serve each pick zone. At 

each split there exists a barcode scanner and a diverter, which when activated directs 

the container to the left, right or straight ahead. There are many such divert points, each 



controlled by a single program. When a container is scanned, a decision must be made 

within a short amount of time, perhaps 100 milliseconds, based on the following criteria: 
• Is the container assigned to this zone 
• Has the container already visited this zone 
• Is the zone full to capacity 

This application can be modeled with a Hierarchical State Machine consisting of one FSM 

for each diverter, and a master FSM controlling each Diverter FSM. The finite state table 

for a single diverter might look like this:  
  

State Event Action New State 

Waiting for Scan Scan Received Ask for Direction,  
Start Divert Timer 1 

Waiting for 

Direction 
Waiting for 

Direction 
Direction Received Store Direction Waiting to Divert 

Waiting for 

Direction 
Timer Popped Alert Operator, Log error Waiting for Scan 

Waiting to Divert Timer Popped Activate Diverter,  
Start Divert Timer 2 

Diverting 

Diverting Timer Popped De-activate Diverter Waiting for Scan 
Waiting for Scan Direction Received Log Error Waiting for Scan 

  
This is a fairly simple FSM to control the divert process for a single diverter. Of interest 

here is the use of timers to control the precise timing of the divert mechanism, 

preventing a crash or jam on the conveyor. It is not enough to fire the diverter as soon 

as the directions are received, as that time is not predictable. Also note that the FSM 

addresses the potential of receiving divert instructions after the container has passed the 

divert point, handling it as an exception condition. 
  
This program however must control many diverters, not just one. This is where the 

Master FSM comes in. It has three basic responsibilities – controlling startup, controlling 

shutdown, and directing events to the proper diverter FSM’s. Worker threads will be 

called upon by the diverter FSM’s to start a read operation on the scanners, and to 

obtain divert instructions from the container data store. When the scanner IO completes, 

or when the divert instructions are returned, that information, along with the identity of 

the diverter to which the information is pertinent will be sent to the Master FSM for 

processing. The Master FSM uses the identity of the diverter to issue an event to the 

proper diverter FSM. 



  
4.3     Controlling Sequential Processes 
The previous example showed how a master FSM could control a series of identical child 

FSM’s to control identical processes. Let’s look at an example where child FSM’s are all 

different from one another. This example works like an assembly line. Each item is 

processed in turn by different stations of the system. Each processing station is 

independent of the others, performs a single task and releases the object for further 

processing by the next station. The objects are fed through the system by conveyor belts 

with photo-eyes positioned to allow precise positioning of the objects for processing by 

each station.  
  
As in the prior example, the Master FSM is responsible for controlling startup and 

shutdown and for directing events to the proper child FSM’s. An additional responsibility 

of the Master FSM is to control the movement of objects through the system. It prevents 

an object from moving from one station to the next, until that station is ready to accept 

a new object. Thus, an object in station 2 cannot move to station 3 until station 3’s 

photo-eye is unblocked, indicating that there is room for a new object. The final station 

will similarly hold objects until the out-take conveyor’s photo-eye is unblocked, 

indicating that there is room on the conveyor for more accumulation. 
  
Since we’re manufacturing widgets, it makes no sense to show the child FSM’s here, 

however the master FSM is worth looking into. Here is its FSM definition:  
  

State Event Action Ne   

Uninitialized Startup Start Children Pen   
Pending Initialization Initialization Timer Popped Check Child FSM Init Status Pen   
Pending Initialization Initialization Complete Start Operation Timer Init  
Initialized Process Timer Popped Check Child FSM Process Status Init  
Initialized Shutdown Stop Children Pen   
Pending Shutdown Shutdown Timer Popped Check Child FSM Shutdown Status Pen   
Pending Shutdown Shutdown Complete Shutdown Master FSM Uni  

  
This is fairly simple, but leaves a lot to the imagination. Let’s dig a little deeper into 

some of the action routines. The first action routine Start Children does the following: 
• Sends a startup event to each child FSM 
• Starts the Initialization Timer 



At this point, the master FSM is waiting for each child FSM to complete its initialization. 

When the Initialization timer pops, Check Child FSM Init Status does the following: 
• Check each child FSM status 
• If all are initialized, send a Initialization Complete event to itself 
• If not all are initialized, restart Initialization Timer 

Once startup is complete, the master FSM periodically checks the progress of its child 

FSM’s making sure each is busy if there is work to do. This occurs in Check Child FSM 

Process Status, which does the following: 
• Check each position, from last to process to first to process for ability to accept 

work. Each station that is ready for work results in the next (earlier in process) 

FSM being issued an Eject event, causing that device to activate its out-take 

motor. 
• Start Process Timer 

Here, it is important to note that each child FSM controls its own photo-eyes, out-take 

motors, etc… The only information exposed to the master FSM by the child FSM’s is 

whether the child FSM can accept new work. In addition, the master FSM checks the 

status of the out-take conveyor for the entire system to ensure that processing is 

stopped when it is not accepting anything, i.e., motor stopped or photo eye blocked. 
  
4.4     Summary 
We have seen the flexibility of the two simple examples presented above. In the real 

world processes are not always that simple. This approach can easily address much more 

complex models, such as combinations of multiple identical FSM’s and sequential FSM’s. 

In addition, we have seen only parent/child relationships so far. This approach can 

address hierarchies to any level of depth. 
  

5.     How it All Fits Together 

Up to this point, I’ve attempted to make a case for using Hierarchical State Machines to 

develop software solutions for automation processes. If you want to know a bit more 

about how it all fits together from a software development point of view, read on. 
  
5.1     Distributed Processing 
Not all automation processes can be addressed by a single hierarchical state machine. 

Often, multiple programs on multiple computers are required. An example is a process 

that requires a database lookup. It might not be feasible to distribute database drivers to 

each computer in a facility, so addressing all database requests from one or more data 

managers might be appropriate.  



  
Communication among programs is handled by an interface class that implements socket 

communication in the following flavors: 
• Raw data over sockets 
• SOAP encoded messages over sockets 

In addition, the socket class can communicate using Secure Socket Layer (SSL) to 

eliminate the potential of exposing sensitive data to prying eyes. Messages arriving from 

external programs can be handled as events that drive the state machine hierarchy. For 

example, a command from a Human Machine Interface requesting the application to 

shutdown would be delivered to the highest-level FSM in the hierarchy as a Shutdown 

event. 
  
5.2     Real-time Solution 
Since automation processes are typically very time-sensitive, this approach must 

function as a real-time system. A real-time system is loosely defined as a system where 

violation of time constraints produces catastrophic results. In the conveyor diverter 

example described earlier, missing a time constraint results in a container being sent to 

the wrong place, possibly affecting shipping schedules. Worse, it could cause an entire 

shipping route to be delayed while the container is filled. Imagine the result if this were 

not just a one-time occurrence but a common occurrence. This approach guarantees 

real-time performance. 
  
FSM Behavior 
All Finite State Machines are serviced by a single processing thread. This is possible 

because looking up an event in an event table, executing a well-written action routine 

and transitioning to a new state is a very rapid process. Thousands of events can be 

handled in a second if the action routines are well written. For that to occur, action 

routines must never block on a resource. If an action results in a database lookup, file 

I/O, or printing of a label, for example, that should be handed off to a worker thread for 

completion in an asynchronous manner. While the worker thread is processing the 

request, the FSM is free to process remaining events. Once the worker thread completes 

its request, it issues an event to the top-level FSM, containing the identification of the 

requesting FSM, the disposition of the request and any requested data. Event processing 

logic within the hierarchy directs the event to the proper FSM. 
  
Events issued to a FSM are queued in a First In, First Out basis. The FSM implementation 

processes events repetitively until there are none to process. It then waits on a 

semaphore that is signaled the next time an event is added to the stack. Additionally, 



events can be placed on the front of the stack by specifying priority. This might be used 

to handle an Emergency Stop event. 
  
Structures 
Finite state tables and event queues are implemented using the Standard Template 

Library (STL), which is an open-source, platform independent set of template classes. 

These classes are used to implement ordered lists in a variety of ways. STL classes are 

invaluable in implementing volatile storage of relational data, providing the fastest 

access possible to list elements. Since STL is based on the C++ standard library, it is 

platform independent, supporting the ability to implement FSM solutions on all 

platforms. 
  
5.3     Class Library Approach 
We have implemented a set of class libraries for use in Hierarchical State Machine 

applications, which include the following: 
• Finite State Machine – This is the ancestor class for all FSM subclasses 

implementing a hierarchy. This class incorporates all finite state table 

management, event processing, and error and status reporting from lowest to 

highest in the hierarchy enabling one call to obtain all status and error messages 

from all state machines. 
• Thread Object – This class encapsulates a worker thread, including 

synchronization objects for controlling startup and shutdown processing 

sequence. The thread object is used to implement worker threads used by the 

FSM’s to perform blocking and non-real-time processes. 
• Communication Classes – Both secure and non-secure socket classes are 

provided, with Simple Object Access Protocol (SOAP) capability. Additionally, a 

worker thread pool class allows a limited set of threads to service I/O completion 

on many socket connections. Since both sockets and SOAP are platform 

independent, using the communication classes enables components written on 

disparate platforms to communicate with each other. 
5.4     IDE Eases Development Process 
After putting a few of these under our belts, it became obvious that the initial setup time 

for developing a new HSM based project was one of the most time consuming aspects of 

the job. This step involves generating a C++ header file to define each finite state table 

and each finite state machine. Next, generating the implementation files for each finite 

state machine follows, with stubs for each action routine. Finally, putting all these 

together in a hierarchy to relate all machines completes the setup. At this point, it’s time 

to fill in the stubs to complete the implementation. 



  
To speed up the setup process, we realized that it would be natural to define a 

hierarchical state machine system using XML, which is well suited for specifying data in 

hierarchical relationships. By writing an Interactive Development Environment (IDE) to 

allow definition of hierarchy and FSM’s via a graphical user interface, the setup time is 

minimized. FSM definitions and relationships are stored in a single XML file, and a post-

processor is utilized to convert the XML to actual C++ definition and implementation 

files. 
  
6.     Conclusions 
Time has proven that the Hierarchical State Machine model has provided the following 

benefits to the development, maintenance and support of automation applications: 
• The development cycle is shortened.  
• Maintenance is simplified 
• Stability is enhanced 
• Changing business requirements are easy to address 

Understanding this approach, one can see how these benefits are gained. Development 

starts with a visual process. The process is defined in terms of manageable chunks of 

logic, closely modeling the real world. State machines are defined and created using the 

IDE, which allows the developer to easily see the state transitions in a tabular display. 

Development continues with the filling out of stub routines. Testing is simplified via the 

extensive logging capabilities, allowing state transitions to be viewed after the fact. 
  
Maintenance is simplified by allowing failing logic to be identified and isolated. Changes 

to address issues are limited to small, easily understandable chunks of code. New 

programmers can easily understand the process by viewing the state machine in the 

IDE, rather than having to pour through thousands of lines of code. With an easy to 

maintain application also comes stability, which is high on the priority list of any 

automation facility. 
  
Business requirements can be addressed without causing a major ripple effect on the 

application. States, events and action routines can be added easily, without causing 

impacting other portions of the code, simply by modifying the state machine definition 

and filling in new stubs. 
  
Maintaining code libraries for multiple clients on a wide variety of applications would be a 

nightmare without a unified, logical approach. “Necessity is the mother of invention”, 



and in our case, the necessity of a sane way to support our customers has led us to 

adopt the Hierarchical State Machine approach. Doing so has paid off, with each 

successful implementation a validation of this approach. 
  

******* 
  

This article was written by Steve  Elliot of Copperline Consulting Services.  Founded in 

1991, Copperline has provided reliable, fast and scalable solutions to automate product 

manufacturing and distribution processes for its client companies. Where others focus on 

one area of the automation process, they have been successful in addressing automation 

needs across the entire spectrum of technologies encountered in an automated facility. 

Their integration specialists have the experience and knowledge to integrate the 

business applications with the production facilities, to connect the back-office with the 

factory floor.  For more information on Copperline Consulting Services, please visit their 

web site at www.copperlineinc.com  
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