
FILE HANDLING IN C PROGRAMMING

In any programming language it is vital to learn file handling techniques.

Many applications will at some point involve accessing folders and files on

the hard drive. In C, a stream is associated with a file. Special functions have

been designed for handling file operations. Some of them will be discussed in

this chapter. The header file stdio.h is required for using these functions.

Opening a file

Before we perform any operations on a file, we need to open it. We do this by

using a file pointer. The type FILE defined in stdio.h allows us to define a file

pointer. Then you use the function fopen() for opening a file. Once this is

done one can read or write to the file using the fread() or fwrite() functions,

respectively. The fclose() function is used to explicitly close any opened file.

Taking the preceding statements into account let us look at the following

example program :

Program 13.1

#include <stdio.h>

 main ()

 {

 FILE *fp;

 fp = fopen("data.txt", "r");

 if (fp == NULL) {

 printf("File does not exist,

please check!\n");

 }

 fclose(fp);

 }

fopen()

Let us first discuss fopen(). This function accepts two arguments as strings.

The first argument denotes the name of the file to be opened and the second

signifies the mode in which the file is to be opened. The second argument can

be any of the following:

File Mode Description

r Open a text file for reading

w Create a text file for writing, if it exists, it is overwritten.

a Open a text file and append text to the end of the file.

rb Open a binary file for reading

wb Create a binary file for writing, if it exists, it is overwritten.

ab Open a binary file and append data to the end of the file.

 Table 13.1

fclose()

The fclose() function is used for closing opened files. The only argument it

accepts is the file pointer.

If a program terminates, it automatically closes all opened files. But it is a

good programming habit to close any file once it is no longer needed. This

helps in better utilization of system resources, and is very useful when you

are working on numerous files simultaneously. Some operating systems place

a limit on the number of files that can be open at any given point in time.

fscanf() and fprintf()

The functions fprintf() and fscanf() are similar to printf() and scanf() except

that these functions operate on files and require one additional and first

argument to be a file pointer.

Program 13.2

#include <stdio.h>

main ()

{

 FILE *fp;

 float total;

 fp = fopen("data.txt", "w+");

 if (fp == NULL) {

 printf("data.txt does not exist, please check!\n");

 exit (1);

 }

 fprintf(fp, 100);

 fscanf(fp, "%f", &total);

 fclose(fp);

 printf("Value of total is %f\n", total);

}

getc() and putc()

The functions getc() and putc() are equivalent

to getchar() and putchar() functions which you studied in Chapter 12 on

Input and Output, except that these functions require an argument which is

the file pointer. Function getc() reads a single character from the file which

has previously been opened using a function

like fopen(). Function putc() does the opposite, it writes a character to the file

identified by its second argument. The format of both functions is as follows :

 getc(in_file);

 putc(c, out_file);

Note: The second argument in the putc() function must be a file opened in

either write or append mode.

Program 13.3

#include <stdio.h>

main ()

{

 char in_file[30], out_file[30];

 FILE *fpin, *fpout;

 int c;

 printf("This program copies the source file to the destination

file

\n\n");

 printf("Enter name of the source file :");

 scanf("%30s", in_file);

 printf("Enter name of the destination file :");

 scanf("%30s", out_file);

 if((fpin=fopen(in_file, "r")) == NULL)

 printf("Error could not open source file for

reading\n");

 else if ((fpout=fopen(out_file, "w")) == NULL)

 printf("Error could not open destination file for

reading\n");

 else

 {

 while((c =getc(fpin)) != EOF)

 putc(c, fpout);

 printf("Destination file has been copied\n");

 }

}

Binary stream input and output

The functions fread() and fwrite() are a somwhat complex file handling

functions used for reading or writing chunks of data containing NULL

characters ('\0') terminating strings.

The function prototype of fread() and fwrite() is as below :

 size_t fread(void *ptr, size_t sz, size_t n, FILE *fp)

 size_t fwrite(const void *ptr, size_t sz, size_t n, FILE *fp);

You may notice that the return type of fread() is size_t which is the number

of items read. You will understand this once you understand how fread()

works. It reads n items, each of size sz from a file pointed to by the

pointer fp into a buffer pointed by a void pointer ptr which is nothing but a

generic pointer. Function fread() reads it as a stream of bytes and advances

the file pointer by the number of bytes read. If it encounters an error or end-

of-file, it returns a zero, you have to use feof() or ferror() to distinguish

between these two. Function fwrite() works similarly, it writes n objects

of sz bytes long from a location pointed to by ptr, to a file pointed to by fp,

and returns the number of items written to fp.

Let us rewrite program 13.3 using fread() and fwrite() functions .

Program 13.4

#include <stdio.h>

#define MAX_SIZE 1024

main ()

{

 FILE *fp, *gp;

 char buf[MAX_SIZE];

 int i, total = 0;

 if ((fp = fopen("data1.txt", "r")) == NULL)

 printf("Error in data1.txt file \n");

 else if ((gp=fopen("data2.txt", "w")) == NULL)

 printf("Error in data2.txt file \n");

 else

 {

 while(i=fread(buf, 1, MAX_SIZE, fp))

 {

 fwrite(buf, 1, MAX_SIZE, gp);

 total +=i;

 }

 printf("Total is %d\n", total);

 }

 fclose(fp);

 fclose(gp);

}

ftell()

Functions ftell() and fseek() are important in a program performing file

manipulations. Function ftell() returns the current position of the file pointer

in a stream. The return value is 0 or a positive integer indicating the byte

offset from the beginning of an open file. A return value of -1 indicates an

error. Prototype of this function is as shown below :

 long int ftell(FILE *fp);

fseek()

This function positions the next I/O operation on an open stream to a new

position relative to the current position.

 int fseek(FILE *fp, long int offset, int origin);

Here fp is the file pointer of the stream on which I/O operations are carried

on, offset is the number of bytes to skip over. The offset can be either positive

or negative, denting forward or backward movement in the file. origin is the

position in the stream to which the offset is applied, this can be one of the

following constants :

 SEEK_SET : offset is relative to beginning of the file

 SEEK_CUR : offset is relative to the current position in the file

 SEEK_END : offset is relative to end of the file

Program 13.5

#include <stdio.h>

#include <stdlib.h>

char buffer[11];

int position;

main ()

{

 FILE *file_ptr;

 int num;

 if ((file_ptr = fopen("test_file", "w+f 10"))

== NULL)

 {

 printf("Error opening test_file \n");

 exit(1);

 }

 fputs("1111111111", file_ptr);

 fputs("2222222222", file_ptr);

 if ((position = fseek(file_ptr, 10, SEEK_SET)) != 0)

 {

 printf("Error in seek operation: errno \n");

 exit(1);

 }

 num = 11;

 fgets(buffer, num, file_ptr);

 printf("The record is %s\n", buffer);

 fclose(file_ptr);

}

The output from the preceding program will be

 The record is 2222222222.

Parithy
Typewritten Text
Source : http://www.peoi.org/Courses/Coursesen/cprog/frame13.html

	Opening a file
	Program 13.1
	fopen()
	fclose()
	fscanf() and fprintf()
	Program 13.2

	getc() and putc()
	Program 13.3

	Binary stream input and output
	Program 13.4

	ftell()
	fseek()
	Program 13.5

