
BASICS OF SCALING: CACHE 

EVERYTHING 
 

I do a lot of work on websites that needs to scale fairly well, but I tend to use that 

mentality for every project. Part of scaling is performance, and the better your app 

performs (e.g. the more requests per second it can handle) the cheaper it is. 

One very easy way to improve your application’s performance is to add caching. If 

you don’t currently have caching, you’ll probably see a massive benefit, depending 

on your application architecture. There are many different types of caching, with 

varying degrees if difficulty to implement. 

I’ve included some very surface level details on caching in this post. These posts 

aren’t meant to be comprehensive tutorials, but to make you aware of various 

techniques used to scale your applications better. 

HTTP Accelerators/Reverse Proxies 
 

You have HTTP accelerator style caching such as Varnish, which tend to be very 

easy to setup and can give you huge performance improvements if you have a lot 

of cacheable content (e.g. on a WordPress blog). Varnish is one of my goto 

resources for fast and easy scaling. Instead of having Apache or Nginx as your 

http://brandonwamboldt.ca/basics-of-scaling-cache-everything-1495/
http://brandonwamboldt.ca/basics-of-scaling-cache-everything-1495/
https://www.varnish-cache.org/


public facing server component, you’d have Varnish. You set Varnish to listen on 

port 80, and you’d change Apache/Nginx/Whatever to listen on an alternate port 

like 8080. 

You configure Varnish with Apache/Nginx as a backend, where it will direct 

requests that aren’t currently cached. That’s all you need for a very basic setup, but 

it’s likely you’ll want to customize Varnish’s caching logic to be a bit more 

permissive (for example, Varnish won’t cache a page if there are cookies in the 

request). I’ll leave the detailed setup instructions for another blog post, since it’s a 

very large topic (you can search for some tutorials to get started). 

Varnish can be the key to saving your website from crashing during large traffic 

spikes (like if you get posted to Reddit or another popular site). When properly 

configured, Varnish can continue serving up cached pages even if the backend is 

offline. Also, Varnish stores it’s cache in memory and is highly optimized at what 

it does (for example, it does very few system calls to avoid frequent context 

switching, they’ve implemented most system calls themselves, in user space). 

Page Caches 
 

Then you have page caching techniques within your application. WordPress, 

Symfony, and Rails for example, all have mechanisms to cache the output of pages 



as static files and use those, skipping much of the slow parts of your application 

(e.g. database queries). Some systems even allow you to store page caches in 

memory instead of on the filesystem, using a builtin mechanism or an external 

application like memcached. 

Page caching techniques vary wildly depending on your application or framework, 

so I won’t go too deep into it here. 

The gist of it is that if you have pages filled with content that doesn’t change super 

frequently and isn’t dynamic for every request, you can typically render it out to a 

static file and serve that until the content changes. This avoids the overhead of 

database calls and complicated application logic, but still has high overhead as 

most dynamic languages like Ruby/Python/PHP have a lot of overhead for every 

request. It’s at least an order of magnitude slower for these languages to serve a 

cached resource than Varnish. 

Also worth noting is that many systems including Varnish support something 

called Edge-Side Includes (similarly there are Server-Side Includes). If the 

majority of your page is static, but there are one or two dynamic parts (e.g. user 

details), you can statically cache the page and use a ESI or SSI to include the 

dynamic parts when the page is served. This tends to be higher performance than 

http://en.wikipedia.org/wiki/Edge_Side_Includes
http://en.wikipedia.org/wiki/Server_Side_Includes


re-rendering the entire page (again, this varies based on your individual 

application). 

Another technique to improve the cache-ability of your pages for both page 

caching and reverse proxies is to use AJAX to fill in dynamic data after the page 

loads. One of my websites has every page cached, so I use AJAX to populate user 

data. Once the page loads, I make a request to a JSON endpoint (not cached) which 

returns the user’s current info. I then use JavaScript to place this in the page. 

In-Memory Caching 
 

Another very common technique for caching is using an in-memory data store like 

Redis or Memcached, located on the same machine as the webserver (sometimes 

this isn’t the case though). You use these in-memory data stores to temporarily 

store data that is very slow to compute. Then in your application, you’d check the 

memory store first, and if it’s not there, you fall back to the actual code. After 

computing the results, you should then add it to the memory store. 

Examples of using this are for caching database calls (example: you have a settings 

table that you fetch every request. It’s far faster to store it in memory than to do a 

database call every request), or slow computations. You shouldn’t use in-memory 



data stores for any information you want to keep, as they are considered volatile 

storage (nothing persists after a restart). 

Some programming languages also support shared memory built right into the 

language. These systems allow you to cache data in a shared block of memory and 

access it from any process. However, I recommend using memcached or something 

similar instead, as they tend to be more powerful and well optimized. 

Cache Busting 
 

Cache busting is the action of clearing/deleting/expiring a cache item. It’s 

commonly used when a resource has changed (for example, my blog cache busts 

Varnish whenever I write a new post). It’s commonly a source of confusion or 

issues when caching is newly introduced (why can’t I see my changes?). Most 

frameworks have libraries for dealing with this, but if you’re going with a 

homegrown approach, it’s important to consider this. You may want to hook into 

your models to clear relevant caches for example. 

 

 

 



Closing Notes 
 

Caching is used heavily by every large website (e.g.Facebook/Google/Twitter/etc). 

Facebook operates one of the largest memcached clusters in the world, consisting 

of hundreds of terabytes of RAM
[1][2]

. These websites save millions of dollars a 

year in server resources by employing a multitude of caching techniques. 

Another lesson that is often learned the hard way, caching can be a nightmare if 

you don’t design your application with caching in mind from the very beginning. 

Adding caching in after the fact will cause many issues (e.g. resources not being 

cache busted automatically when a resource is changed). Naming is the other very 

important part of caching. It pays off to think of a good, scalable naming scheme 

before you get started. 

 

 

Source: http://brandonwamboldt.ca/basics-of-scaling-cache-everything-1495/ 

https://www.facebook.com/note.php?note_id=39391378919
https://www.facebook.com/note.php?note_id=39391378919

