

A Priority based Round Robin CPU

Scheduling Algorithm for Real Time Systems

Ishwari Singh Rajput

Department of Computer Science and Engineering

Amity School of Engineering and Technology, Amity University, Noida, UP, India

Deepa Gupta

Department of Computer Science and Engineering
Amity Institute of Information Technology, Amity University, Noida, UP, India

Abstract- The main objective of this paper is to develop a new approach for round robin C P U scheduling

a l g o r i t h m which improves the performance of CPU in real time operating system. The proposed Priority based

Round-Robin CPU Scheduling algorithm is based on the integration of round-robin and priority scheduling algorithm. It

retains the advantage of round robin in reducing starvation and also integrates the advantage of priority scheduling. The

proposed algorithm also implements the concept of aging by assigning new priorities to the processes. Existing round

robin CPU scheduling algorithm cannot be implemented in real time operating system due to their high context switch

rates, large waiting time, large response time, large turnaround time and less throughput. The proposed algorithm

improves all the drawbacks of round robin C P U scheduling algorithm. The paper also presents the comparative

analysis of proposed algorithm with existing round robin scheduling algorithm on the basis of varying time

quantum, average waiting time, average turnaround time and number of context switches.

Keywords – CPU scheduling, Round Robin CPU scheduling algorithm, Turnaround time, Waiting time, Response time,

Context switching, Gantt chart.

I. INTRODUCTION

In computer science, scheduling is the process by which processes are given access to system resources (e.g.

processor cycles, communications bandwidth). The need for a scheduling algorithm [5] arises from the requirement

of fast computer systems to perform multitasking (execute more than one process at a time) and multiplexing

(transmit multiple flows simultaneously).

Scheduling is a fundamental operating system function that determines which process run, when there are multiple

runnable processes. CPU scheduling is important because it impacts resource utilization and other performance

parameters. There exists a number of CPU scheduling algorithms [1, 2] like First Come First Serve, Shortest Job

First Scheduling, Round Robin scheduling, Priority Scheduling etc, but due to a number of disadvantages these are

rarely used in real time operating systems except Round Robin scheduling.

A number of assumptions are considered in CPU scheduling which are as follows [19, 20]:

1. Job pool consists of runnable processes waiting for the CPU.

2. All processes are independent and compete for resources.

3. The job of the scheduler is to distribute the limited resources of CPU to the different processes fairly and in a way

that optimizes some performance criteria.

The scheduler [6] is the component of the kernel that selects which process to run next. Operating systems may

feature up to three distinct types of schedulers, a long term scheduler, a mid-term or medium term scheduler and a

short-term scheduler (fig1). The long term scheduler or job scheduler selects processes from the job pool and loads

them into memory for execution. The short term scheduler, or CPU scheduler selects from among the processes that

are ready to execute, and allocates CPU to one of them. The medium term scheduler removes processes from

memory and reduces the degree of multiprogramming results in the scheme of swapping. Swapping is the scheme

International Journal of Innovations in Engineering and Technology (IJIET)

Vol. 1 Issue 3 Oct 2012 1 ISSN: 2319 – 1058

which is performed by dispatcher which is the module that gives control of the CPU to the process selected by the

short-term scheduler [7].

Fig. 1 Queuing diagram for scheduling

The CPU scheduling also plays an important role in the real time operating system which always has a time

constraint on computations. A real time system is the one whose applications are mission-critical, where real-time

tasks should be scheduled to be completed before their deadlines [8, 9]. Most real-time systems control

unpredictable environments and may need operating systems that can handle unknown and changing tasks. So, not

only a dynamic task scheduling is required, but both system hardware and software must adapt to unforeseen

configurations [10].

There are two main types of real-time systems [23]: Hard Real-Time System, Firm or Soft Real-Time System. In

Hard Real-Time System, it requires that fixed deadlines must be met otherwise disastrous situation may arise

whereas in Soft Real-Time System, missing an occasional deadline is undesirable, but nevertheless tolerable. System

in which performance is degraded but not destroyed by failure to meet response time constraints is called soft real

time systems.

In real time systems each task should be invoked after the ready time and must be completed before its deadline [12,

13, 14], an attempt has been made to satisfy these constraints. Simple round robin architecture [11] is not suitable to

implement in Soft real time due to more number of context switches, longer waiting and response times. This in turn

leads to low throughput in the system. If a real-time process having relatively larger CPU burst it will leads to the

problem of starvation [21]. Priority scheduling may be a better option for real-time scheduling but it will face the

similar problem i.e. low priority processes will always starved [22].

II. SCHEDULING OBJECTIVES

A system designer must consider a variety of factors in designing a scheduling algorithm, such as type of

systems used and what are user's needs. Depending on the system, the user and designer might expect the

scheduler to [3]:

 Maximize throughput: A scheduling algorithm should be capable of servicing the maximum number of

processes per unit of time.

 Avoid indefinite blocking or starvation: A process should not wait for unbounded time before or while

process service.

Minimize overhead: Overhead causes wastage of resources. But when we use system resources
effectively, then overall system performance improves greatly.

Enforcement of priorities: if system assigns priorities to processes, the scheduling mechanism should

favor the higher-priority processes.

International Journal of Innovations in Engineering and Technology (IJIET)

Vol. 1 Issue 3 Oct 2012 2 ISSN: 2319 – 1058

Achieve balance between response and utilization: The scheduling mechanism should keep resources of

system busy.

 Favor processes exhibits desirable behavior.

 Degrade gracefully under heavy load.

A system can accomplish these goals in several ways. The scheduler can prevent indefinite blocking of processes

through the concept of aging. The scheduler can increase throughput by favoring processes whose requests can be

satisfied quickly, or whose completion cause other processes to run.

III. SCHEDULING CRITERIA

There are various CPU scheduling algorithms which have different properties, and the choice of a particular

algorithm may favor one class of processes over another. For selection of an algorithm for a particular situation, we

must consider properties of various algorithms. The scheduling criteria [2] include the following:

Context Switch: A context switch is process of storing and restoring context (state) of a preempted

process, so that execution can be resumed from same point at a later time. Context switching is usually

computationally intensive, lead to wastage of time and memory, which in turn increases the overhead of

scheduler, so the design of operating system is to optimize only these switches.

Throughput: Throughput is defined as number of processes completed per unit time. Throughput i s

slow in round robin scheduling implementation. Context switching and throughput are inversely

proportional to each other.

CPU Utilization: This is a measure of how much busy the CPU is. Usually, the goal is to maximize the

CPU utilization.

Turnaround Time: Turnaround time refers to the total time which is spend to complete the process and

is how long it takes the time to execute that process. The time interval from the time of submission of a

process to the time of completion is the turnaround time. Total turnaround time is the sum of the periods

spent waiting to get into memory, waiting time in the ready queue, execution time on the CPU and doing

I/O.

Waiting Time: Waiting time is the to ta l time a process has been waiting in ready queue. The CPU

scheduling algorithm does not affect the amount of time during which a process executes or does

input-output; it affects only the amount of time that a process spends waiting in ready queue.

Response Time: In an interactive system, turnaround time may not be best measure. Often, a process can

produce some output fairly early and can continue computing new results while previous results are being

produced to the user. Thus, response time is the time from the submission of a request until the first

response is produced that means time when the task is submitted until the first response is received. So the

response time should be low for best scheduling.

So we can conclude that a good scheduling algorithm for real time and time sharing system must possess
following characteristics [3]:

Minimum context switches.

Maximum CPU utilization.

Maximum throughput.

Minimum turnaround time.

Minimum waiting time.

International Journal of Innovations in Engineering and Technology (IJIET)

Vol. 1 Issue 3 Oct 2012 3 ISSN: 2319 – 1058

Minimum response time.

IV. ROUND ROBIN SCHEDULING ALGORITHM

The RR scheduling algorithm [4] is given by following steps:-

1. The scheduler maintains a queue of ready processes and a list of blocked and swapped out processes.

2. The Process Control Block of newly created process is added to end of ready queue. The Process Control

Block of terminating process is removed from the scheduling data structures.

3. The scheduler always selects the Process Control Block from the head of the ready queue. This is a

disadvantage since all processes are basically given the same priority. Round robin also favors the process

with short CPU burst and penalizes long ones [17].

4. When a running process finishes its time slice, it is moved to end of ready queue. A time slice [16] is an

amount of time that each process spends on the processor per iteration of the Round Robin algorithm. All

processes are executed in a first come first serve manner but are preempted after a time slice. The process

will either finish in the time slice given or the process will be returned to the tail of the ready queue and

return to the processor at a later time.

5. The event handler performs the following actions:

a) When a process makes an input -output request or swapped out, its Process Control Block is removed

from ready queue to blocked/swapped out list.

b) When input-output operation awaited by a process finishes or process is swapped in its Process

Control Block is removed from blocked/swapped list to end of ready queue.

There are some disadvantages of round robin CPU scheduling algorithm for operating system which are as follows:

Larger waiting time and Response time

In round robin architecture the time which process spends in the ready queue waiting for the processor to

get executed is known as waiting time and the time when the process takes to complete its job and exit

from the task is called as turnaround time. Larger waiting and response time are clearly a drawback in

round robin architecture as it leads to degradation of system performance.

Context Switches

When the time slice of the task ends and the task is still executing on the processor the scheduler forcibly

preempts the tasks on the processor and stores the task context in stack or registers and allocates the

processor to the next task in the ready queue. This action which is performed by the scheduler is called as

context switch. Context switch leads to the wastage of time, memory and leads to scheduler overhead.

Low throughput

Throughput is defined as number of process completed per time unit. If round robin is implemented in soft

real time systems throughput will be low which leads to severe degradation of system performance. If the

number of context switches is low then the throughput will be high. Context switch and throughput are

inversely proportional to each other.

With these observations it is found that the existing simple round robin architecture is not suitable for real time

systems. So, its drawbacks are eliminated in the modified version of round robin described in the next section.

V. PRIORITY SCHEDULING ALGORITHM

The operating system assigns a fixed priority to every process, and the scheduler arranges the processes in the ready

queue in order of their priority. Lower priority processes get interrupted by incoming higher priority processes.

International Journal of Innovations in Engineering and Technology (IJIET)

Vol. 1 Issue 3 Oct 2012 4 ISSN: 2319 – 1058

Overhead is not minimal, nor is it significant in this case. Waiting time and response time depend on the priority of

the process. Higher priority processes have smaller waiting and response times. Deadlines can be easily met by

giving higher priority to the earlier deadline processes.

Disadvantage: Starvation of lower priority processes is possible if large no of higher priority processes keep arriving

continuously.

VI. PROPOSED ALGORITHM

The proposed architecture focuses on the drawbacks of simple round robin architecture which gives equal priority to

all the processes (processes are scheduled in first come first serve manner). Because of this drawback round robin

architecture is not efficient for processes with smaller CPU burst. This results in the increase in waiting time and

response time of processes which results in the decrease in the system throughput.

The proposed architecture eliminates the defects of implementing simple round robin architecture. The proposed

algorithm will be executed in two steps which will helps to minimize a number of performance parameters such as

context switches, average waiting time and average turnaround time. The algorithm performs following steps:

S tep 1: Allocate CPU to every process in round robin fashion, according to the given priority, for given time

quantum (say k units) only for one time.

Step 2: After completion of first step following steps are performed:
a) Processors are arranged in increasing order or their remaining CPU burst time in the ready queue. New priorities
are assigned according to the remaining CPU bursts of processes; the process with shortest remaining CPU burst is
assigned with highest priority.

b) The processes are executed according to the new priorities based on the remaining CPU bursts, and each

process gets the control of the CPU until they finished their execution.

VII. CASE STUDIES

Five processes have been defined with CPU burst time and their priorities, these five processes are scheduled in

round robin fashion and also according to the proposed algorithm. The context switch, average waiting time,

average turnaround time has been calculated and the results were compared. For doing this we have implemented

the priority based CPU scheduling algorithm in C and carried out number of experiments out of which only two

experiments are discussed here for varying time quantum and we assure that the results analysis are remain

unchanged for others.

Case I:

Consider f i v e processes viz. A, B, C, D and E with g i v e n CPU burst time and associated priorities.

Let the time quantum is 5 ms.

Table1. Input component for the processors

Process Name
CPU Burst Time

(ms)
Priority

A 22 4

B 18 2

International Journal of Innovations in Engineering and Technology (IJIET)

Vol. 1 Issue 3 Oct 2012 5 ISSN: 2319 – 1058

C 9 1

D 10 3

E 4 5

According to simple RR scheduling:-

Simple Round Robin does not use priority and five processes has been scheduled using simple Round Robin

architecture. The time slice of five milliseconds has been used. In round robin algorithm no process is allocated CPU

for more than one time slice in a row. If the CPU process exceeds one time slice, the concern process will be

preempted and put into the ready queue. The process is preempted after the first time quantum and the CPU is given

to the next process which is in the ready queue (process B), similarly schedules all the process and completes the

first cycle. In the second cycle same method is used to schedule the processes. The process time slicing in simple

Round Robin architecture is shown in Gantt chart.

Gantt chart:

Number of context switches: 13

Average waiting Time: 33.200001 ms

Average Turnaround Time: 45.8 ms

According to proposed algorithm:-

Priority based Round Robin CPU scheduling consists of two rounds:

Round 1: Process with the highest priority is executed first for the time equal to given time quantum i.e. 5 ms. In

the same manner other processes are executed according to their priorities for single time quantum. Eg: The

sequence of execution for above case is:

Table 2. Executed CPU burst for first round

S.No Process Executed Burst Priority

1 C 5 1

2 B 5 2

3 D 5 3

4 A 5 4

5 E 4 5

Round 2: This round includes the changing of process’s priorities according to the remaining CPU Burst Time. The

process with least remaining CPU Burst Time is assigned highest priority. The new assigned priorities are as

follows:

Table 3. Remaining CPU burst for second round & new assigned priorities

S.No Process Remaining Burst Priority

1 C 4 1

2 D 5 2

International Journal of Innovations in Engineering and Technology (IJIET)

Vol. 1 Issue 3 Oct 2012 6 ISSN: 2319 – 1058

3 B 13 3

4 A 17 4

Now the processes are executed according to the new priority assigned without taking consideration of time

quantum.

Gantt chart:

Number of context switches: 8

Average waiting Time: 26.200001 ms

Average Turnaround Time: 38.800000 ms

Fig. 2 Priority based round robin for time quantum=5

Case II:

Consider the same problem with varying time quantum.

Let the time quantum is 9 ms.

According to simple RR scheduling:-

Execution of processes takes place without considering priorities.

Gantt chart:

Number of context switches: 8

Average waiting Time: 38.2 ms

Average Turnaround Time: 50.8 ms

According to proposed algorithm:-

Execution takes place in two rounds:

Round 1: Process with highest priority is executed first for the time equal to given time quantum i.e. 9 ms. In the

same manner other processes are executed according to their priorities for single time quantum. Ex: The sequence

International Journal of Innovations in Engineering and Technology (IJIET)

Vol. 1 Issue 3 Oct 2012 7 ISSN: 2319 – 1058

of execution for above case is:

Table 4. Executed CPU burst for first round

S.No Process Executed Burst Priority

1 C 9 1

2 B 9 2

3 D 9 3

4 A 9 4

5 E 4 5

Round 2: This round includes the changing of process’s priorities according to the remaining CPU Burst Time. The

process with least remaining CPU Burst Time i.e. D (1 ms) is assigned highest priority. The new assigned priorities

are as follows:

Table 5. Remaining CPU burst for second round & new assigned priorities

S.No Process Remaining Burst Priority

1 D 1 1

2 B 9 2

3 A 13 3

In the second round the processes are executed until they finished their execution, according to the new priority

assigned without taking consideration of time quantum.

Gantt chart:

Number of context switches: 7

Average waiting Time: 28.000000 ms

Average Turnaround Time: 40.600000 ms

Fig. 3 Priority based round robin for time quantum=9

VIII. COMPARISON OF RESULTS AND DISCUSSION

The performance of two algorithms can be compared by considering the number of context switches, average

waiting time and average turnaround time. Fig.4 shows the comparison of number of context switches performed in

International Journal of Innovations in Engineering and Technology (IJIET)

Vol. 1 Issue 3 Oct 2012 8 ISSN: 2319 – 1058

simple round robin and priority based round robin algorithm and can be plotted in MATLAB 7.0. It shows that the

proposed algorithm performs better over simple round robin for varying time quantum. We see that priority based

round robin has less number of context switches in comparison to simple round robin for same value of time

quantum.

Fig. 4 Graph showing comparison of context switches in both algorithms

Fig.5 shows the comparison of average waiting time in simple round robin and priority based round robin algorithm

and can be plotted in MATLAB 7.0. It shows that the proposed algorithm has less average waiting time over simple

round robin for varying time quantum.

Fig.5 Graph showing comparison of average waiting time in both algorithms

Fig.6 shows the comparison of average turnaround time in simple round robin and priority based round robin

algorithm and can be plotted in MATLAB 7.0. It shows that the proposed algorithm has less average turnaround

time over simple round robin for varying time quantum.

International Journal of Innovations in Engineering and Technology (IJIET)

Vol. 1 Issue 3 Oct 2012 9 ISSN: 2319 – 1058

Fig. 6 Graph showing comparison of average turnaround time in both algorithms

IX. CONCLUSION

We have successfully compared both the algorithm i.e. simple round robin and the proposed one that the proposed one

is more efficient because it has less average w a i t i n g time, average turnaround time and number of context switches

as compared to simple round robin, in turn reducing the operating system overhead and hence dispatch latency. Also,

it reduces the problem of starvation as the processes with less remaining CPU burst time are assigned with the higher

priorities and are executed first in the second round of algorithm. Performance of time sharing systems can be

improved with the proposed algorithm and can also be modified to enhance the performance of real time system.

REFERENCES

[1] Silberschatz, A., Peterson, J. L., and Galvin, B.,Operating System Concepts, Addison Wesley, 7th Edition, 2006.

[2] E.O. Oyetunji, A. E. Oluleye,” Performance Assessment of Some CPU Scheduling Algorithms”, Research Journal of Information Technology,

1(1): pp 22-26, 2009.

[3] Ajit Singh, Priyanka Goyal, Sahil Batra,” An Optimized Round Robin Scheduling Algorithm for CPU Scheduling”, (IJCSE) International

Journal on Computer Science and Engineering Vol. 02, No. 07, 2383-2385, 2010.

[4] Rakesh kumar yadav, Abhishek K Mishra, Navin Prakash, Himanshu Sharma,” An Improved Round Robin Scheduling Algorithm for CPU

Scheduling”, (IJCSE) International Journal on Computer Science and Engineering Vol. 02, No. 04, 1064-1066, 2010.

[5] William Stallings, Operating Systems Internal and Design Principles, 5th Edition , 2006.

[6] Saroj Hiranwal, K. C. Roy,” Adaptive Round Robin Scheduling using shortest burst approach based on smart time slice”, International Journal

of Computer Science and Communication Vol. 2, No. 2, pp. 319-323, July-December 2011.

[7] Abbas Noon, Ali Kalakech, Seifedine Kadry, “A New Round Robin Based Scheduling Algorithm for Operating Systems: Dynamic Quantum

Using the Mean Average”, IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011.

[8] Blazewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., and Weglarz, J.: Scheduling Computer and Manufacturing Processes, Berlin, Springer,

(2001).

[9] Stallings, W.: Operating Systems Internals and Design Principles, 5th edition, Prentice Hall, (2004).

[10] Swin, B. R., Tayli, M., and Benmaiza, M.: Prospects for Predictable Dynamic Scheduling in RTDOS, Journal King Saud University,

Computer & Information Science, Vol. 9, pp. 57-93, (1997).

[11] Barbara Korousic –Seljak (1994) “Task scheduling policies for real-time systems” Journal on MICROPROCESSOR AND

MICROSYSTEMS, VOL 18, NO. 9, pg 501-512.

[12] Enrico Bini and Giorgio C. Buttazzo (2004) “Schedulability Analysis of Periodic Fixed Priority Systems” journal on IEEE

TRANSACTIONS ON COMPUTERS VOL 53 NO.11, pg 1462-1473.

International Journal of Innovations in Engineering and Technology (IJIET)

Vol. 1 Issue 3 Oct 2012 10 ISSN: 2319 – 1058

[13] Zhi Quan and Jong-Moon Chang (2003) “ A Statistical Framework for EDF Scheduling” journal on IEEE COMMUNICATION LETTERS

VOL 7 NO.10, pg 493-495.

[14] Houssine Chetto and Maryline Chetto (1989) “ Some Results of Earliest Deadline Scheduling Algorithm” journal on IEEE

TRANSACTION ON SOFTWARE ENGINEERING. VOL 15. NO.10, pg 1261-1269.

[15] Harry Katzan, Jr., “Operating Systems / A Pragmatic Approach”, pages 113, 157, 350-353, Van Nostrand Reinhold Company, 1973.

[16] Stanley A.Kurzban, Thomas S. Heines, and Anthony P Sayers, “Operating Systems Principles”, pages 50-52, 370-371, Van Nostrand

Reinhold Company, 1984.

[17] Philipe A. Jansen, “Operating Systems / Structures and Mechanisms” pages 77-80, Academic Press, Inc., 1985.

[18] William Stallings, Ph.D., “Operating Systems / Internals and Design Principles”, pages 75-76, 406-408, Prentice Hall, 2001.

[19] Englander, I., 2003. The Architecture of Computer Hardware and Systems Software; An Information Technology Approach, 3rd Edition,

John Wiley & Sons, Inc.

[20] Yavatkar, R. and K . Lakshman,1995. A CPU Scheduling Algorithm for Continuous M edia Applications, In Proceedings of the 5th

International Workshop on Network and Operating System Support for Digital Audio and Video, pp: 210-213.

[21] I. E. W. Giering and T. P. Baker, "A tool for the deterministic scheduling of real-time programs implemented as periodic Ada tasks," Ada

Lett., vol. XIV, pp. 54-73, (1994).

[22] Shahzad, B., Afzal, M.T.: ,”Optimized Solution to Shortest Job First by Eliminating the Starvation”. In: The 6th Jordanian Inr. Electrical an

Jordan (2006).

[23] M.Kaladevi, M.C.A.,M.Phil., and Dr.S.Sathiyabama, M.Sc.,M.Phil.,Ph.D, “A Comparative Study of Scheduling Algorithms for Real Time

Task”, International Journal of Advances in Science and Technology, Vol. 1, No. 4, 2010

International Journal of Innovations in Engineering and Technology (IJIET)

Vol. 1 Issue 3 Oct 2012 11 ISSN: 2319 – 1058

