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Abstract

Large power systems are highly complex systems that defy predictions with any degree of
certainty. In this paper, an analytical framework for the assessment of small signal stability under
operating uncertainty is presented.

A rigorous analysis framework for the description of uncertainty in operating conditions is sug-
gested. Using structured singular value theory and optimization tools, techniques for robust stabil-
ity analysis of complex power systems are then derived and a method to quantify the effect of para-
metric uncertainties on the stability of critical inter-area modes is presented. A computationally-
efficient method for modeling parametric uncertainty based on linear fractional transformation
(LFT) theory is investigated and tested. With this approach, it becomes possible to estimate the
effects of variations in the parameters of major transmission resources on the nominal stability of
critical inter-area modes.

The use of the analysis methods is demonstrated on two systems: i) a two-machine test system,
and ii) a two-area, 11-bus, 4-machine test system.

KEYWORDS: structured singular value, robustness analysis, parametric uncertainty, small signal
analysis



1.  Introduction 

In recent years there has been a growing interest in the small signal analysis for
large scale systems governed by uncertain models. Advances in robust control 
theory, along with the application of optimization techniques are beginning to 
make feasible the analysis of robust stability problems using small-signal analysis 
software [1-4]. These methods provide worst-case estimates of critical operating 
conditions and can be used to identify key uncertainty sources as well as to 
quantify the effect of uncertainty in operating condition on critical inter-area 
modes. 

Large scale simulation of uncertainties of operating conditions is a complex 
problem. Uncertainty in operating conditions arises from poor knowledge about 
expected planning and operating conditions, varying load levels, uncertainty in 
the topology of the system and the great complexity and uncertainty in the 
scheduling of energy transactions [5]. Furthermore, power system dynamic 
behavior is becoming more unpredictable and variable, often involving complex 
interactions among controllers [6].  

Variations in operating conditions may result in system performance 
deterioration. As more complex devices are being developed and installed, 
utilities are becoming increasingly aware of the critical role of uncertainty in 
system design and operation.  Models that do not consider the impacts of these 
uncertainties will not accurately model the accompanying climatic responses. 
Allowing for uncertainty in operating conditions, increases the decision-making 
process and may result in increased system reliability and a better utilization of 
control resources. The difficulty in obtaining a realistic uncertainty 
characterization usually leads to conservative designs and operation. 

Conventionally, small signal stability studies are conducted by analyzing 
system behavior around an expected operating condition [7]. Since linearization is 
performed around a few selected operating conditions, these methods essentially 
provide local information. Furthermore, the models ignore sources of uncertainty 
such as variations in operating conditions and changes in system structure. To 
minimize the effects of these uncertainties, sequential studies have to be 
conducted for each base case condition and expected operating scenario. These 
approaches, however, are known to be conservative 

There has been much work in recent years devoted towards the 
characterization and quantification of uncertainty. Several analytical studies have 
underlined the high degree of sensitivity of small signal model simulations to 
variations in operating conditions and system structure. An emerging method that 
has been successfully applied for the development of robustness analysis is the 
structure singular value introduced by Doyle et al. [8,9]. 
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In this context, Djukanovic et al. used SSV theory to determine robust 
stability of power systems with respect to variations in operating conditions [3]. 
More recently, Castellanos et al. proposed a technique for robust stability 
analysis of large power systems using the structured singular value theory [4]. The 
suitability of this technique for the numerical treatment of uncertainty has been 
validated in the context of small-disturbance robust stability analysis of uncertain 
large-scale systems.  

This paper continues this investigation to develop a novel approach to 
characterize uncertainty arising from variations in operating conditions. An 
analysis framework for the assessment of small signal stability under operating 
uncertainty that overcomes some of the limitations of the existing analysis 
methods is presented. Unlike conventional small-signal analysis tools that are 
based on a linearized model of the system, the new model introduces a framework 
for small signal analysis in which variations in system operating conditions are 
explicitly included and treated. The approach performs the computation of robust 
stability margins in a single step using an optimization technique and does not 
require trial and error and repeated calculations at various operating conditions 
required when using conventional methods. The proposed methodology integrates 
commercial software with robustness analysis in order to provide accurate 
characterization of small signal stability.  

The use of the analysis methods is demonstrated on two systems i) a two-
machine test system, and ii) a two-area, 11-bus, 4-machine test system. 
Conventional small signal stability studies are used as benchmarks for comparison 
of robustness analysis to conventional studies. 

Several fruitful research directions are identified including the incorporation 
of model structure uncertainty in the analysis. 

2.  Parametric Uncertainty Model 
The evaluation of uncertainty effects on system dynamic performance is emerging 
as an area of increasing importance in the analysis of stability and control of 
power systems. This section briefly reviews existing approaches to parametric 
uncertainty modeling. Emphasis is placed on the analysis of conservatism 
introduced by the methods. 

The first step in generating an uncertain model for use in robustness analysis 
is to generate a linear fractional representation which spans the operating space of 
interest in the problem [8].  

Consider a general uncertain system represented by the state-space realization 
 

),( pxfx =& (1) 
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where x is the n -dimensional state vector, and 
T

mppp ],...,,[ 21=p is the 
vector of independent uncertain parameters which are assumed to vary within 

some practical limits 
maxmin
kkk ppp ≤≤ . Assume further that each entry of the 

state matrix can be defined by a polynomial function of the parameters vector p .
A problem of particular interest is that of determining if the linearized system (1) 
is robustly stable for all possible parameter variations. This is a problem that can 
be efficiently dealt with using robustness theory. 

A key difficulty in the analysis of uncertain systems is that they are not in 
explicit state space for required for robust theory. This section describes the 
salient features of the methodology employed for generating state-space 
representations from the original nonlinear system (1). 

2.1 Affine Parameter Dependent Representation: the Min-Max Approach 
If a functional dependence of the A -matrix on the parameter vector p exists, then 
the effect of parameter variations can be determined analytically in the 
neighborhood of an operating condition.  

Let the linear system representation be expressed in the form [10] 
 

xpAx )(=& (2) 
 

in which the entries of the state space matrix depend on the parameter vector p .
Assuming further that each varying element, ),( ji , of the A state-space matrix 
changes without certain bounds maxmin

ijijij aaa ≤≤ , with nominal values 

2/)( min mx
ijijij aaa += , and n

ija ℜ∈ .

The variation in the entries of the state-space matrices can be written as 
 

( ) njiaraa
ijoij aijijaijijij ,...,1,,1 =+=+= δαδ (3) 

 
where )/()( minmaxminmax

ijijijijij aaaar +−= , and the modulus of the uncertainties is 

supposed to be bounded as follows 1≤
ijaδ ; the scaling factor 

2/)( minmax
ijijij aa −=α gives a measure of the relative uncertainty in the parameter. 

As discussed in [10,11], the method is straightforward to implement, but it leads 
to some conservatism since possible joint parametric uncertainties are ignored. 
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Combining the individual changes in (3) yields, a rationally dependent model 
of the form 

xAAx)p(Ax ⎥
⎦

⎤
⎢
⎣

⎡
+== ∑

=

An

i
iio

1
δ& (4) 

where oA represents the nominal system, while matrices iA describe 
variations from the nominal system. Inherent to this approach is the assumption 
that parameter variations appear explicitly in the linear representation (2). 

2.2 Sensitivity-Based Models 
A second approach is to approximate the effect which the variations of the 
parameters have on the nominal plant model using a truncated Taylor�s series. 
Assume to this end that the dependence of the varying A-matrix elements on the 
set of independent uncertain parameters can be expressed as 

),...,,( 21 mijij pppfa = , where the nonlinear functions are to be determined. 
Expanding this function in a Taylor�s series around a nominal value yields [12,15] 
 

L+Δ
∂
∂

+Δ
∂
∂

+= k

pk
k

pk
o p

p
p

p o
k

o
k

2
2

2AAA)p(A (5) 

or, in component form, 
 

( ) ( ) L+−
∂

∂
+−

∂

∂
+≈

2

2

2
var )( o

kk

pk

ijo
kk

pk

ij

pijkij pp
p
a

pp
p
a

apa
o
k

o
k

o
k

(6) 

where the partial derivatives can be computed analytically or numerically using 
finite differences.  

In practice, however, the general calculation of functional sensitivities relating 
the effects of the parameter kp on the varying elements of the matrices iA may 
not be readily available. Further, due to the high dimensionality of the plant, the 
general calculation of analytical models may become prohibitive. This is 
especially true for system representations in which the parameter kp does not 
appears in explicit form in the state matrix A . Finally, models of the form (6) are 
only valid in a neighborhood around a particular linearization point. This limits 
their applicability to investigate robustness over large regions of the operating 
space. 
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In order to be more precise, let kp be an uncertain parameter and let o
kp be its 

nominal value. From our previous discussion, the parametric uncertainty can be 
expressed as a parameter set of the form 

 
( ) mkrpp kkkk ,...,1,1 =+= δ (7) 

 
in which 

( )
maxmin

maxmaxmaxmin

,
2 kk

kk
k

kk
k pp

pprppp
+
−

=
+

=

where kp is the mean parametric value, and kr is the relative uncertainty in the 
parameter. Substitution of the uncertain parameter variation (7) in (6) yields the 
np order polynomial approximation form 
 

njiaaaappa np
ijijijij

oo
ij npo

,...,,,)(var 12
11 21

=++++=Δ+ δδδ L (8) 

where the coefficients 
npo ijijijij aaaa ,...,,,

21
depend on the initial conditions, o

kp and 

the average value kp [10]; np and n are the polynomial and the state matrix 
order, respectively.  
 
Equation (8) can be reinterpreted in terms of the δ �s as 

xAAx)p(Ax ⎥
⎦

⎤
⎢
⎣

⎡
+== ∑

=

An

i
i

i
o

1
δ& .

Variations to these approaches are described in [1,3,4]. This model avoids the 
need for explicit representation of the state matrix and may be used to study 
complex systems. 

We emphasize that in interpreting parameter variations in the uncertainty 
framework two fundamental problems are involved: (a) identifying the varying 
elements of the A-matrix affected by the change in the set of uncertain 
parameters, and (b) and introducing an uncertain representation of such a change 
in the nominal plant model. These two issues are treated separately below. 

In what follows a new model is presented which explicitly accounts for 
uncertainty in operating conditions and reduces conservatism. Unlike existing 
approaches, this formulation is based on numerical rather than analytical 
approximations and allows the study of general models for which no information 
on the internal structure of the state matrix is available. 
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3. Numerical Least-Squares Approximations 

3.1 Least-Squares Approximation to Parameter Determination 
A key issue in deriving an appropriate uncertain system representation is allowing 
for the role of parameter variations whose exact values are unknown but which 
are known to lie between some minimum and maximum values.  Given a 
nonlinear model (1), it is always possible to perform numerical linearization over 
several points in the expected range of operating conditions and /or over all 
combinations of the uncertain parameters.  The parameter vector could represent 
different load levels, power flow or any other variation in operating condition. 

Let ( )kNkkk pppp L21= , where N is the number of operating 
conditions, be the grid of operating conditions for the k th varying parameter 
corresponding to particular values of the admissible range of parameter variations.

To calculate the dependency of the coefficients of the state matrix, A , on the 
varying parameters, we sequentially perform numerical linearizations over the 
selected operating space.  The resulting linear models form a multi-model state 
description 

x)AAA(x kNkk +++= L& 21 (9) 
 

which satisfactorily approximates all linearizations of the linear model (1). 
 

Based on the min-max formulation in section 2.2 we assume that the 
functional dependency of the A-matrix elements can be approximated by the 
higher order polynomial approximation 
 

np
kijkijkijijkij

o
k

o
kij papapaapfppa

npo
�...���)()( 2

21
++++==Δ+ (10) 

 
for nji ,...,1, = where the iA represent linearization at the i th operating 
condition, r is the order of the polynomial approximation, and the polynomial 
coefficients j

kp are expressible in terms of the uncertainty variations. More 
generally, we consider estimation of the parameters 

ro ijijij aaa �,...,�,�
1

in the model 
(10) using least-squares optimization.
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Figure 1 illustrates the nature of this approach.

Figure 1. Functional dependency of the entries of the A-matrix elements on
variations in the k th system parameter

To illustrate the details of the proposed procedure consider the case of a single 
varying parameter, 1p=p , which can be related to variations in the power system 
parameters such as loading or changes in tie-line structure. Let further the 
operating space be given by [ ]Npppp 112111 L= , where N is the number 
of operating conditions considered in the analysis. 

At each condition, the linear system representation 
becomes Nlpl ,...,,x)(Ax 111 ==& . Note that since the parameter 1p may not 
appear in explicit form in the state-matrix l1A , a power flow solution is needed 
for each operating condition. 

A critical issue in the application of the method is the identification of varying 
elements in the state-matrix representations. To determine significant deviations 
from the nominal value, we introduce the metric 

)()(var
, k

o
k

o
ij

o
ijk

o
kjii ppaappad Δ+−=Δ+= (11)

where o
ija represents the nominal (unperturbed) condition. By neglecting terms 

with variations below a given threshold, the varying elements of the A-matrix can 
be identified. Alternatively, numerical sensitivities can be computed. 

For each varying element ( var
ija ) of the state matrix set, the coefficients in (10) 

can be determined using least-squares optimization. Application of this procedure 
to all operating conditions results in the set of (usually) over-determined equations 
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where the coefficients 

klAija are the ),( ji varying entries of the A state matrices 

which change respect to the nominal condition, i.e. )AA( klnom − .

Equivalently, the system (12) can be written in compact form as 

yaX =var
ij  (13) 

 
where  

T
ijijijijij np

aaaa ]����[
210

var L=a ; T
ijAijAijA knkk
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The solution of the unknown vector T
ijijijijij np

aaaa ]����[
210

var L=a is then 

obtained using a least-squares solution XyXXa 1var )( −= T
ij . Techniques to solve 

(13) are described in [4] and are not repeated here.  
 
Several issues arise in the practical implementation of the method: 
 
(1). The selection of the optimal order of the polynomial approximation ( np )

(2). The determination of the number of operating conditions ( N )

(3). The computation of the coefficients np
ijijijij npo

aaaa �...,�,�,� 2
21

(4). The identification of the varying entries ( var
ija ) of the linearized power

system representations
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Experience with the analysis of large-scale uncertain systems [4] suggests that 
a second-order polynomial approximation and three operating conditions suffice 
to accurately determine stability margins. With these simplifications, the least-
squares optimization reduces to the conventional problem 
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This speed ups computations and enables the efficient determination of robust 

stability margins. 

3.2   Linear Factional Representation 
The cornerstone to this whole procedure is the estimation of an accurate 
representation of the system. Once the coefficients of the polynomial formulation 
are obtained, the variations in the coefficients of the A -matrix coefficients can be 
obtained. Substituting δba ppP +=1 into (10), the uncertain plant with structured 
uncertainty becomes, 

 
2

11
var

21
δδ ijijijij aaaa

o
++= (15) 

 

[ ]
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���
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Repeating the same procedure for each varying element, we obtain the 
perturbed system 
 

( ) ( ) ( )[ ]xIAIAAxAAxpAx 2
1

var
111

var
1

var)( δδ ++=Δ+== oo& (16) 
 
where the polynomial coefficients 

21
,, ijij aaa

oij
 are the i,j th entries of  matrices 

var
,

var
,

var AAA 111o , respectively. Matrix varAo represents the nominal plant. Observe 
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that 0111 == varvar AA yields the nominal model of the power system and matrices 
varA x contain the coefficients of the polynomial functions. 

A similar result holds for higher order system approximations. 
The closed-loop system is then formed by connecting the uncertainty 

representation to the nominal model.  
Following Morton and McAfoos [12], we define a linear system with fictitious 

inputs and outputs  
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Computation of the interconnected uncertainty system representation for 

the augmented plant is then straightforward. To convert the system into the 
standard form for μ analysis, we define the matrices 

 
varAM o=11  ; [ ]0I0IM =12  
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The LFT of the uncertain system given by these expressions can then be 
easily cast into the following state-space form 
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and 
 

zw Δ= (19)                                   
 

where )(δΔ has the diagonal structure ( )IIblockdiag 21 δδδ =Δ )( . Here M
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represents the known part of the system, and Δ represents the uncertainty present 
in the system. 

Figure 2 shows the general framework for robust stability analysis used in the 
analysis. It can be seen that the relationship between the input and the output 
signal of the closed-loop system is given by the upper linear fractional 
transformation (LFT)       

( )( ) ( ) ( )( ) 12
1

112122 MMIMM,M −Δ−Δ+=Δ δδδuF (20) 

Once we have the LFT-based uncertainty description, robustness can be 
assessed using μ analysis. Let )(sΔ represent the set of allowable varying 
conditions represented as uncertainties. Referring to Fig. 1, it can be shown [8] 
that the perturbed closed-loop system is stable for all )(sΔ with ( ) 1≤Δ

∞
ωj if 

and only if )(sM is stable (i.e. )(sM has all of its poles in the open left-half plane 
and ( )( )δΔ,MuF remains in an ∞H norm sense bounded by unity, that is if and 
only if 

1,1))((max 12
1

112122 ≤Δ∀<ΔΔ−+
∞

− ωμ MMMMΔ I (21) 

where Δμ denotes the structured singular value, and 
∞

is the infinity norm. If 
this condition is satisfied, the system is said to be robustly stable, i.e. if the system 
is stable for all permissible s'Δ .

A value of 1<Δμ implies that no perturbation within Δ exists that will 
destabilize the feedback system. Alternatively, this condition can also be 
interpreted as saying that the true plant dynamics are stable, assuming these 
dynamics lie within the range generated by the nominal model dynamics coupled 
with the set of modeling errors. 

Finally, small signal stability margins can be determined using (21).The 
procedure described above is quite straightforward and general. 
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Figure 2. Feedback loop with structured perturbation

4.  Numerical Results 

In order to illustrate the accuracy and performance of the present method, two test 
cases were considered, namely, a single-machine infinite bus, and a two-area test 
system. In both cases, the analytical predictions were compared with results from 
conventional eigen-analysis using a commercial small-signal stability program 
and Prony analysis. 

The uncertainty scenarios included:  

� Parametric uncertainty involving variations in generation levels, and 

� Combined uncertainty in both operating conditions and uncertainty in the 
topology of the system arising from contingency conditions 
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The following sections describe the uncertainty definition for each case. 

4.1   Single-Machine Infinite Bus System 
As a first example of the application of the technique we analyze a single-machine 
infinite bus system shown in Figure 3. The transmission system consists of two 
parallel ac lines and a local load. 

The transmission lines have a reactance of 0.5 p.u y 0.95 p.u., respectively, 
and the transformer reactance is 0.15 p.u. on a base of 2200 MVA. The load is 
450+j300 MW. Figure 3 gives the power flows for the nominal operating 
condition. 
 

0.
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Figure 3. On line diagrams of the single-machine infinite bus test system. 

The generator is round rotor with d and q axis transient and subtransient 
effects represented, and equipped with a fast excitation system. The local static 
load is represented as constant impedance for both active and reactive power; the 
overall state system has 10 states. Appendix A provides dynamic data used in the 
simulations. 

The procedure outlined in section 3 was then applied to generate an uncertain 
model of the system. Two sources of uncertainty in operating conditions are 
considered and investigated; uncertainty in transmission power flows, and 
uncertainty in the interconnecting tie-line reactance.  

4.1.1   Single Varying Parameter 
In this case, the generated power is modeled as a structured uncertainty. 
Following the approach in section 3, the operating space was approximated by 
three operating points representing different levels of power generation, namely 

[ ]MWMWMWp 1700165015501 = . At each operating condition a load 
flow simulation is performed and the associated linearized model was derived. 
For instance, 1650A represents the state matrix related to the operating condition 
with a generated power of 1650 MW.  
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The base model used in the studies is a 10-state lineralization of the nonlinear 
system model at each operating points; the states of the model are 

421 eeeddqdr XXXEEEE ,,,,,,,, ""''ωδ Δ and
4eX . The nominal model corresponds to a 

1650 MW intertie power transfer.  
As a benchmark for comparison against the proposed technique, linear models 

were obtained using SSAT [14]. In this analysis, the generated power was 
increased in small steps until instability was detected. Any increase in generation 
is compensated by the infinite bus.   

Stressing the system by increasing the generated power, the oscillatory mode 
becomes unstable when the generated power is about 1700 MW. Table 1 depicts 
the damping and frequency of the critical electromechanical mode as a function of 
generated power. 

Table 1 
Damping of critical mode as a function of generated power. 

Generated 
Power 
(MW) 

 
Eigenvalue 

Damping 
ratio 
 (%) 

Frequency 
(Hz) 

1550 -0.0853± j7.4849  1.14 1.91 
1650 -0.0252± j7.4094  0.34 1.80 
1700 0.0067± j7.3682 - 0.09 1.73 

Based on the chosen admissible uncertainty, an uncertain model was 
developed. In order to identify the coefficients of the state matrices that change 
with the operating condition, we use the metric )( #nomnomdif

iid AAA −==
where 1650AA =nom  represents the linearized model for a 1650 MW power 
transfer. 

For the one uncertain parameter case we can define dif
IA and dif

IIA as the 

varying matrices obtained from the differences )AA(A 15501650 −=dif
I

and )AA(A 17001650 −=dif
II , respectively. For the case under study, dif

IA has ten 

varying entries with magnitudes larger that the adopted criterion, ε whilst dif
IIA

has eight varying entries.  Matrix dif
IA was chosen for robust stability assessment 

in the following studies. 
 

14

International Journal of Emerging Electric Power Systems, Vol. 8 [2007], Iss. 5, Art. 2

http://www.bepress.com/ijeeps/vol8/iss5/art2



The dif
IA matrix has the general structure 
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while the corresponding entries of the state matrices which change with the 
operating conditions are: 
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Having identified the varying entries associated with the set of state matrices 
the coefficients of the quadratic approximation for each varying element ij are 
determined by solving a least-squares problem (refer to Eq. (14)). More precisely, 
the coefficients associated with the varying entry 12a are obtained from 
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The analysis above suggests that we can express the variations in the terms of 
the A -matrix which vary with the generation change in an analytical form. These 
results indicate that over the range of variations of interest, the variation in the 
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coefficient 12a can be sufficiently accurately approximated by a second order 
polynomial representation of the form 

 
2

1
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1
2

1121121212 10304.00015.035.75
210
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Repeating the least-squares fit for each varying element of matrix dif
IA we 

obtain the following uncertain matrices varvarvar A,A,A 1110 that contain the effects of 
the polynomial function coefficients.  
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Substituting δba ppP +=1 defined in (15) into (10) and using the procedure 
explained in section (3.1), the uncertain plant with structured uncertainty becomes 

 
( ) ( )IAIAAA 2

11111 δδ ++= o

Based on the preceding small-signal results, the ability of the technique for 
assessing robust stability was considered. The μ plot in figure 4 shows a peak 
value of 261.=μ which indicates that the system is robustly unstable ( 1>μ ) for 
this range of operating conditions.  

Figure 4. Robust stability μ plot 
The largest range of generation power for which the system is guaranteed to 

remain stable can then by approximated by 
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MW
pppp

powergeneratedestimated 1685
22

=
−

+
+

= δminmaxminmax  

where μδ /1= . The corresponding estimated oscillation frequency is 7.44 rad/s 
(1.18 Hz) which closely corresponds to the linear analysis results in Table 1 .    
Results determined from robustness analyses are found to be in excellent 
agreement with those of conventional eigenanalysis. Comparison of the error 
between the exact value in Table 1 (1690 MW) and the estimated generated power 
using robust analysis is of about 1.95% which indicates that the robust stability 
procedure is accurate. 

 Although more operating conditions could be used to improve these results, 
experience with the study of large uncertain power system models shows that 
those used here are sufficient to produce an accurate system representation for the 
analysis of practical systems [4]. 

4.1.2 Prony Analysis on Tansient Stability Output Data 
Prony analysis was used to further confirm robustness findings. The simulated 
contingency is the outage without fault of transmission line #1. The line was 
reconnected after 5 cycles. Figure 5 shows the dynamic behavior of selected 
signals for various levels of tie-line power. 
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a) Generator relative angle 
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b) Power Flow on circuit one of line Bus two- Infinite Bus  
 

Figure 5. Several system parameters for three generated powers on synchronous 
machine. 

 
Note that in this case the system becomes unstable for an intertie power flow 

of about 1690 MW in good agreement with analytical predictions. Table 2 
compares the identified damping ratio and frequency of the system mode for 
various levels of power transfers. These results are again in good agreement with 
robust stability analysis results. 

 
Table 2 

Prony results 
Generated Power 
(MW) 

Real part 
(1/s) 

Imaginary part 
(rad/s) 

Frequency 
(Hz) 

Damping ratio 
(%) 

1550 -0.085 7.45 1.190 1.139 
1650 -0.025 7.40 1.177 0.338 
1690 0.000 7.36 1.171 0.000 
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4.1.3   Two Varying Parameters Case, 21 pp ,

A second major source of uncertainty in power operation derives from variations 
in the interconnecting tie-line reactance, linetieX − . In this section, both the 
interconnecting reactance and the generation level are used to simultaneously 
assess the influence of uncertainty of operating conditions on the nominal stability 
of the system mode. In this study, the interconnecting tie-line reactance was 
varied from the nominal condition with the transmission lines in service, to a 
stressed system conditions with one of the circuits out of services.  

To compute the critical loading condition, the system was stressed by 
increasing the MW transfer to the infinite bus. To increase the MW transfer, the 
generation was increased gradually and this load increase was met by an equal 
amount of generation decrease in the infinite bus. 

The robust stability analysis procedures indicated in section 3 were used to 
represent linetieX − and the generation level as structured uncertainties. The analysis 
of upper bounds in figure 6 shows a peak bigger than one suggests that the system 
is unstable. Table 3 shows the estimated and exact equivalent reactance and 
generated power along with the eigenvalue calculated at the estimated parameters. 
The absolute error between the exact and estimated parameters is 2.32% and 
0.12% for linetieX − and generated power, respectively.  

 

Figure 6. Robust stability µ plot. a) Frequency sweep from 0 to 10 rad/s; b) 
Frequency sweep around the critical frequency (7.3 rad/s). 
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Table 3 
 Robust stability analysis results 

μ upper bounds 24.56 
Estimated ω (rad/s) 7.4111 
Exact  ω (rad/s) 7.3334 
Estimated linetieX − (p.u.) 0.3321 
Exact  linetieX − (p.u.) 0.3400 
Error (%) 2.32 
Estimated  power flow (MW) 1628.1 
Exact  power flow (MW) 1630 

Error (%) 0.12 
Exact eigenvalue -0.0005±± j7.3334 

ζ = 0.01 % 

4.2   Two-Area Test System 
As a second example we consider a 2-area, 4-machine test system from Ref. [15]. 
Figure 7 shows a single-line diagram of this system. The transmission system 
consists of 9 buses, 4 generators, 8 lines, 4 transformers and 2 loads. In addition, 
shunt compensators and a static VAR compensator are used to support system 
voltage. The state space model of the system has 48 states. 

The dynamic characteristics of this system are strongly dependent on system 
structure and the amount of power transfer over the major intertie. Network 
robustness is also of importance as the loss of a transmission circuits leads to 
reduced small-signal stability margins. 

 

Figure 7. Two-area power system 
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For the purposes of this study, machines all generators are represented using 
detailed subtransient models and fast static excitation models (refer to Appendix). 
A SVC, with supplementary damping control, was installed at the midpoint of the 
intertie. The load model used is constant current for the real component and 
constant impedance for the reactive component.  

The effectiveness of the proposed technique is demonstrated through two case 
studies. In the first case study, the power transfer between Areas 1 and 2, linetieP − ,
is modeled as a varying, uncertain parameter. In the second case, the 
interconnecting tie-line reactance, linetieX − , is considered as an uncertain quantity. 
We finally examine the application of the developed procedures to determine the 
worst-case operating conditions as well as to analyze uncertainties occurring 
simultaneously at several locations in the system. 

Small signal stability studies were performed to assess system stability 
margins when subjected to small variations in operating conditions, as well as to 
benchmark the robust stability analysis results. 

Eigenvalue analysis of this system identifies three electromechanical modes of 
concern which are shown in Table 4. The study focuses on the effects of varying 
levels of power transfers on the stability of the inter-area mode. 

Table 4 
Electromechanical system eigenvalues 

Mode 
description 

Real part 
(1/s) 

Imaginary 
part (rad/s) 

Frequency 
(Hz) 

Oscillation mode pattern 

Inter-area -0.321 4.037 0.64 GEN1,GEN2  vs  GEN3,GEN4 
Local 1 -0.463 6.863 1.09 GEN1  vs  GEN2 
Local 2 -1.227 7.559 1.20 GEN3  vs  GEN4 

For robust stability analysis, a grid of operating conditions is determined from 
a parameter space of the form 

[ ]
[ ]131211

131211

XXXX

pppp

linetie

linetie

=

=

−

−

Here, the first value for the interconnecting reactance corresponds to the 
normal operating condition with all circuits in service, whilst the second and third 
values, correspond to the case with  one and two circuits out of service. This is a 
highly complex case since the conventional determination of critical parameter 
values requires a large number of simulations to estimate the stability limits. 

A systematic analysis of these uncertainties was performed to determine their 
impact on the stability of the inter-area modes using the LFT-based framework. In 
this procedure the uncertainty in model parameters was represented by specifying 
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a grid of six operating conditions. This model was found to give an accurate 
enough approximation to the parameter space. 

From the μ plot in figure 8, we can see that, for the limiting condition, μ has 
a dominant frequency at about 0.64 Hz (3.22 rad/s) larger than one suggesting that 
the system is robustly unstable. 

Figure 8. Robust stability μ plot for two varying parameters 

 
Table 5 shows the estimated and exact equivalent reactance and power flow 

along with the eigenvalue calculated at the exact instability condition determined 
using conventional eigenanalysis. As can be seen Table 5, the errors between the 
exact  and  estimated   parameters  are �7.6%  and  -1.41% for linetieX − and  

linetieP − , respectively.   
Table 5 

Robust stability analysis results - Two varying parameters case 
μ upper bounds 1.8247 

Estimated ω (rad/s) 3.2248 
Exact  ω (rad/s) 2.1798 
Estimated linetieX − (p.u.) 0.1868 
Exact  linetieX − (p.u.) 0.2010 
Error (%) -7.6 
Estimated  power flow (MW) 417.8 
Exact  power flow (MW) 423.7 
Error (%) -1.41 
 
Exact eigenvalue 

0.0077±± j2.1798 
ζ = - 0.35 % 
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It can be seen that uncertainty analysis gives a good prediction of the highest 
limiting power transfer. The results for the limiting reactance, on the other hand, 
are deemed satisfactory considering the range of variation in operating conditions 
considered in the study. 

5.  Conclusion 

In this paper, an LFT-based uncertainty description of structured, real uncertainty 
arising from variations in operating conditions has been proposed. Other classes 
of uncertainties can also be treated, provided that they do not modify the 
dimension of the state representation. The mathematical framework permits 
consideration of complex systems and provides an accurate representation of 
uncertainty of the model over a wide range of parameter variations. 

The methodology can open many doors for investigators to allow more 
natural, uncertainty modelling in power system studies. In addition, this approach 
can greatly facilitate solution of robust stability, particularly for real-time, and/or 
large scale applications.  

These tools are being integrated into management and operational planning 
tools using commercial small signal stability software.  

 
Appendix A. Single-machine infinite-bus system data-PTI format 

1 'GENROU' G1 8.0 0.03 1.0 0.07 3.50 0.0 1.81 1.76 0.30 0.65 0.23 0.15            
0.0 0.0 / 

3 'GENCLS' G3  99999.0 0.0 / 

1 'SEXS' G1 0.1 0.1 85. 0.1 0 3/ 

Appendix B. Two-Area System Dynamic Data (PTI format) 
1 'GENROU'   1            8.0          0.03         0.4         0.05         6.5         0.0         
1.8        1.7         0.3      0.55        0.25        0.2        0.0392      0.267 /              

1 'EXAC4 '   1      0.01    0.5   -0.5    0.0    0.0    200   0.0    7.0         -7.0   0.0   /          

1 'ESDC2A'   1               0.05      20         0.055        0.0       0.0         3.5    -0.06        
1.46          0.36   0.125       1.8     0.0          0.4    1.2     0.2     0.0 / 

1 'STAB1'   1            20          10          2.5         0.02     0.556       5.4         0.2   /        
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