
Microprocessors Directives

Outline of the Lecture
• Directives and sample programs
• Assemble, link and run a program

 DIRECTIVES AND SAMPLE PROGRAMS

 Directives are statements that give directions to the assembler about how it should translate the
assembly language instructions into machine code.

 An assembly language instruction consists of four fields,

[label:] mnemonic [operands] [;comments]

Brackets indicate that the field is optional. Brackets are not typed.

1. The label field allows the program to refer to a line of code by name.
2. In a line of assembly language program there can be mnemonic (instruction) and operand(s).

Ex: ADD AL,BL
 MOV AX,6764H

3. Alternatively, instead of these two fields there can be directives. Directives are used by the
assembler to organize the program as well as other output files. The following program adds two
bytes to calculate their sum. IN this program SEGMENT, DB, ENDS, ASSUME, END, and ENDP
are examples of directives.

4. The comment field begins with a “;”

;A Sample Assembly Language Program using FULL SEGMENT DEFINITION
STSEG SEGMENT
 DB 64 DUP (?)
STSEG ENDS
;--
DTSEG SEGMENT

DATA1 DB 52H
DATA2 DB 29H
SUM DB ?

DTSEG ENDS
;--
CDSEG SEGMENT
MAIN PROC FAR ;This is the program entry point
 ASSUME CS:CDSEG,DS:DTSEG,SS:STSEG
 MOV AX,DTSEG ;load the data segment address
 MOV DS,AX ;assign value to DS
 MOV AL,DATA1 ;get the first operand
 MOV BL,DATA2 ;get the second operand
 ADD AL,BL ;add the operands
 MOV SUM,AL ;store result in location SUM
 MOV AH,4CH ;set up to
 INT 21H ;return to the Operating System (DOS)
MAIN ENDP
CDSEG ENDS
 END MAIN ;this is the program exit point

 Program segments:

label SEGMENT [options]
 ;place the statements belonging to this segment
here
 label ENDS

 The stack segment defines storage for the stack, the data segment defines the data that the
program will use and the code segment contains the Assembly Language instructions.

 Stack segment definition

STSEG SEGMENT ;the “SEGMENT” directive begins the segment
 DB 64 DUP (?) ;this segment contains only one line
STSEG ENDS ;the “ENDS” segment ends the segment

“DB 64 DUP (?)” , directive reserves 64 bytes of memory for the stack.

 Data segment definition
• There are three data items in this sample program: DATA1, DATA2 and SUM. Each is

defined as DB (define byte).
• The DB directive is used to allocate memory in byte-sized chunks. DW (define word)

allocates 2 bytes of memory. DATA1 and DATA2 have initial values but SUM is reserved
for later use.

 Code segment definition
• The first line after the SEGMENT directive is the PROC directive. A procedure is a group of

instructions designed to accomplish a specific function.
• The PROC and ENDP directives must have the same label. The PROC directive may have the

option FAR or NEAR. DOS requires FAR option to be used at the program entry.
• ASSUME directive associates segment registers with specific segments by assuming that the

segment register is equal to the segment labels used in the program.
• Note that there can be many segments of the same type. So Assume helps to differentiate which

is to be used at a time.
• DOS determines the CS and SS segment registers automatically. DS has to be manually

specified.

MOV AX,DTSEG ;load the data segment address
 MOV DS,AX ;assign value to DS

• Load AL and BL with DATA1 and DATA2 and ADD them together, and store the result in

SUM.
MOV AL,DATA1 ;get the first operand

 MOV BL,DATA2 ;get the second operand
 ADD AL,BL ;add the operands
 MOV SUM,AL ;store result in location SUM

• The last two instructions returns the control to the operating system.
 MOV AH,4CH ;set up to
 INT 21H ;return to DOS

 SIMPLIFIED SEGMENT DEFINITION

 An assembly language program can be written in two segment definition formats. In addition to
the Full Segment Definition Format, the recent assemblers support Simplified Segment
Definition, which is simpler and easier to write.

 The following program uses the Simplified Segment Definition.

;A Sample Assembly Language Program using SIMPLIFIED SEGMENT DEFINITION
.MODEL SMALL ;Gives the memory model to be used by the program
.STACK 64
;--
.DATA

DATA1 DB 52H
DATA2 DB 29H
SUM DB ?

;--
.CODE
MAIN: MOV AX,@DATA
 MOV DS,AX ;assign value to DS
 MOV AL,DATA1 ;get the first operand
 MOV BL,DATA2 ;get the second operand
 ADD AL,BL ;add the operands
 MOV SUM,AL ;store result in location SUM
 MOV AH,4CH ;set up to
 INT 21H ;return to the Operating System (DOS)
 END MAIN ;this is the program exit point

 In a program with Simplified Segment Definition, the memory model that the program will use must be
specified. The following Memory Models can be used:

• SMALL MODEL (.MODEL SMALL): The model uses maximum of 64K bytes for Code and

64K bytes for Data (Code<=64K and Data <=64K). This model is the most widely used
memory model and is sufficient for all the programs to be used in this course.

• MEDIUM MODEL, (.MODEL MEDIUM): The model uses maximum of 64K bytes for Data

and Code can exceed 64K bytes (Code>64K and Data <=64K).

• COMPACT MODEL, (.MODEL COMPACT): The model uses maximum of 64K bytes for

Code and Data can exceed 64K bytes (Code<=64K and Data >64K).

• LARGE MODEL, (.MODEL LARGE): Both Code and Data can exceed 64K bytes. However

no single data set (i.e. array) can exceed 64K bytes (Code>64K and Data >64K).

• HUGE MODEL, (.MODEL HUGE): Both Code and Data can exceed 64K bytes. Additionally,
a single data set (i.e. array) can exceed 64K bytes (Code>64K and Data >64K).

 ASSEMBLE, LINK AND RUN A PROGRAM

The following table summarizes the process required to assemble, link and run an assembly
language program.

Step Input Program Output
1. Edit the program keyboard Editor myfile.asm
2.Assemble the program myfile.asm MASM or TASM myfile.obj
3. Link the program myfile.obj LINK or TLINK myfile.exe

“.asm” file is the source file created with an editor or a word processor.
“.obj” assembler (e.g.TASM) converts .asm file’s Assembly language instructions into machine
language.
“.exe” TLINK is the program to produce the executable file.

DEBUG, is a program included in DOS operating system that allows the programmer to monitor the
programs execution.

 Useful commands are:-u (unassemble command is used to look et the machine code)

 -d (dump command displays the contents of memory to the
screen)

 -g (go command executes the program)

 -q (quits from DEBUG to DOS)

Maddox38
Typewritten Text
Source: http://opencourses.emu.edu.tr/pluginfile.php/829/mod_resource/content/0/Lecture_Notes/eee410_Lecture6.pdf

