

Module
3

Embedded Systems I/O
Version 2 EE IIT, Kharagpur 1

Lesson
15

Interrupts
Version 2 EE IIT, Kharagpur 2

Instructional Objectives

After going through this lesson the student would learn

• Interrupts
• Interrupt Service Subroutines
• Polling

• Priority Resolving
• Daisy Chain Interrupts

• Interrupt Structure in 8051 Microcontroller
• Programmable Interrupt Controller

Pre-Requisite

Digital Electronics, Microprocessors

15 Introduction

 Real Time Embedded System design requires that I/O devices receive servicing in an
efficient manner so that large amounts of the total system tasks can be assumed by the processor
with little or no effect on throughput. The most common method of servicing such devices is the
polled approach. This is where the processor must test each device in sequence and in effect
“ask” each one if it needs servicing. It is easy to see that a large portion of the main program is
looping through this continuous polling cycle and that such a method would have a serious,
detrimental effect on system throughput, thus, limiting the tasks that could be assumed by the
microcomputer and reducing the cost effectiveness of using such devices. A more desirable
method would be one that would allow the microprocessor to be executing its main program and
only stop to service peripheral devices when it is told to do so by the device itself. In effect, the
method would provide an external asynchronous input that would inform the processor that it
should complete whatever instruction that is currently being executed and fetch a new routine
that will service the requesting device. Once this servicing is complete, however, the processor
would resume exactly where it left off. This can be effectively handled by interrupts.
 A signal informing a program or a device connected to the processor that an event has
occurred. When a processor receives an interrupt signal, it takes a specified action depending on
the priority and importance of the entity generating the signal. Interrupt signals can cause a
program to suspend itself temporarily to service the interrupt by branching into another program
called Interrupt Service Subroutines (ISS) for the specified device which has caused the
interrupt.

Types of Interrupts

Interrupts can be broadly classified as
 - Hardware Interrupts
 These are interrupts caused by the connected devices.
 - Software Interrupts
 These are interrupts deliberately introduced by software instructions to generate user

defined exceptions
 - Trap

Version 2 EE IIT, Kharagpur 3

http://www.webopedia.com/TERM/I/program.html
http://www.webopedia.com/TERM/I/event.html

 These are interrupts used by the processor alone to detect any exception such as divide by
zero

Depending on the service the interrupts also can be classified as
 - Fixed interrupt

• Address of the ISR built into microprocessor, cannot be changed
• Either ISR stored at address or a jump to actual ISR stored if not enough bytes available

 - Vectored interrupt
• Peripheral must provide the address of the ISR
• Common when microprocessor has multiple peripherals connected by a system bus

• Compromise between fixed and vectored interrupts
– One interrupt pin
– Table in memory holding ISR addresses (maybe 256 words)
– Peripheral doesn’t provide ISR address, but rather index into table

• Fewer bits are sent by the peripheral
• Can move ISR location without changing peripheral

Maskable vs. Non-maskable interrupts

– Maskable: programmer can set bit that causes processor to ignore interrupt
• This is important when the processor is executing a time-critical code

– Non-maskable: a separate interrupt pin that can’t be masked
• Typically reserved for drastic situations, like power failure requiring immediate backup

of data to non-volatile memory
Example: Interrupt Driven Data Transfer (Fixed Interrupt)

Fig.15.1(a) shows the block diagram of a system where it is required to read data from a input
port P1, modify (according to some given algorithm) and send to port P2. The input port
generates data at a very slow pace. There are two ways to transfer data
(a) The processor waits till the input is ready with the data and performs a read operation from
P1 followed by a write operation to P2. This is called Programmed Data Transfer (b) The
other option is when the input/output device is slow then the device whenever is ready interrupts
the microprocessor through an Int pin as shown in Fig.15.1. The processor which may be
otherwise busy in executing another program (main program here) after receiving the interrupts
calls an Interrupt Service Subroutine (ISR) to accomplish the required data transfer. This is
known as Interrupt Driven Data Transfer.

Version 2 EE IIT, Kharagpur 4

PC-Program counter, P1-Port 1 P2-Port 2, μC-Microcontroller

Fig.15.1(b) describes the sequence of action taking place after the Port P1 is ready with the data.
Example: Interrupt Driven Data Transfer (Vectored Interrupt)

μC
Data memory

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x8001, R0

19: RETI # ISR return

ISR

:

...

100:
101

instruction
instruction

Main program
...

Program memory

PC

Int

System bus

P1 P2

0x8000

0x8001

Fig: 15.1(a) The Interrupt Driven Data Transfer

P1 receives input data in a
register with address 0x8000. μC is executing its main program

T
im

e at 100

P1 asserts Int to request
servicing by the
microprocessor.

After completing instruction
at 100, μC sees Int asserted,
saves the PC’s value of 100,
and sets PC to the ISR fixed
location of 16.

The ISR reads data from
0x8000, modifies the data, and
writes the resulting data to
0x8001.

The ISR returns, thus
restoring PC to 100+1=101,
where μP resumes executing.

After being read, P1 de-asserts
Int.

Fig. 15.1(b) Flow chart for Interrupt Service

Version 2 EE IIT, Kharagpur 5

 Fig. 15.2(a)

μC Data memory

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x8001, R0

19: RETI # ISR return

ISR

:

...

100:
101

instruction
instruction

Main program
...

Program memory

PC
Int

System bus

P1

0x8000

P2

0x8001

Inta

16 0

100

μC is executing its main program. P1 receives input data in a
register with address 0x8000.

P1 asserts Int to request servicing
by the microprocessor. After completing instruction at 100, μC

sees Int asserted, saves the PC’s value of
100, and asserts Inta.

μC jumps to the address on the bus (16).
The ISR there reads data from 0x8000,
modifies the data, and writes the
resulting data to 0x8001.

The ISR returns, thus restoring PC to
100+1=101, where μP resumes
executing.

After being read, P1 deasserts
Int.

T
im

e

P1 detects Inta and puts
interrupt address vector 16 on
the data bus.

Fig. 15.2(b) Vectored Interrupt Service

Version 2 EE IIT, Kharagpur 6

Interrupts in a Typical Microcontroller (say 8051)

External
Interrupts

Interrupt
Control

4k
ROM

128
RAM

Timer 1

Timer 0
Counter
Inputs

Serial
Port

Bus
Control

CPU

Osc

TXD RXD

Four I/O Ports

Address/Data

P0 P1P2 P3

 Fig. 15.3 The 8051 Architecture

The 8051 has 5 interrupt sources: 2 external interrupts, 2 timer interrupts, and the serial port
interrupt.
These interrupts occur because of

1. timers overflowing
2. receiving character via the serial port
3. transmitting character via the serial port
4. Two “external events”

Interrupt Enables

Each interrupt source can be individually enabled or disabled by setting or clearing a bit in a
Special Function Register (SFR) named IE (Interrupt Enable). This register also contains a global
disable bit, which can be cleared to disable all interrupts at once.

Interrupt Priorities

Each interrupt source can also be individually programmed to one of two priority levels by
setting or clearing a bit in the SFR named IP (Interrupt Priority). A low-priority interrupt can be
interrupted by a high-priority interrupt, but not by another low-priority interrupt. A high-priority
interrupt can’t be interrupted by any other interrupt source. If two interrupt requests of different
priority levels are received simultaneously, the request of higher priority is serviced. If interrupt
requests of the same priority level are received simultaneously, an internal polling sequence
determines which request is serviced. Thus within each priority level there is a second priority
structure determined by the polling sequence. In operation, all the interrupt flags are latched into
the interrupt control system during State 5 of every machine cycle. The samples are polled
during the following machine cycle. If the flag for an enabled interrupt is found to be set (1), the

Version 2 EE IIT, Kharagpur 7

interrupt system generates a CALL to the appropriate location in Program Memory, unless some
other condition blocks the interrupt. Several conditions can block an interrupt, among them that
an interrupt of equal or higher priority level is already in progress. The hardware-generated
CALL causes the contents of the Program Counter to be pushed into the stack, and reloads the
PC with the beginning address of the service routine.

Interrupt Enable(IE) Register terrupt Priority (IP) Regist

 High Priority

Interrupt

Interrupt Pol-
ling Sequence

Low Priority
Interrupt Global

Disable
Individual

Enables

IP Register IE Register

IE0

IE1

IT0

IT1

INT0

INT1

TF0

TF1

RI
TI

0

0

1

1

Fig. 15.4 8051 Interrupt Control System

Version 2 EE IIT, Kharagpur 8

INT0 : External Interrupt 0

INT0 : External Interrupt 1

TF0: Timer 0 Interrupt
TF1: Timer 1 Interrupt
RI,TI: Serial Port Receive/Transmit Interrupt

The service routine for each interrupt begins at a fixed location (fixed address interrupts). Only
the Program Counter (PC) is automatically pushed onto the stack, not the Processor Status Word
(which includes the contents of the accumulator and flag register) or any other register. Having
only the PC automatically saved allows the programmer to decide how much time should be
spent saving other registers. This enhances the interrupt response time, albeit at the expense of
increasing the programmer’s burden of responsibility. As a result, many interrupt functions that
are typical in control applications toggling a port pin for example, or reloading a timer, or
unloading a serial buffer can often be completed in less time than it takes other architectures to
complete.

Interrupt
Number

Interrupt
Vector Address

Description

0 0003h EXTERNAL 0
1 000Bh TIMER/COUNTER 0
2 0013h EXTERNAL 1
3 001Bh TIMER/COUNTER 1
4 0023h SERIAL PORT

Simultaneously occurring interrupts are serviced in the following order:

1. External 0 Interrupt
2. Timer 0 Interrupt
3. External 1 Interrupt
4. Timer 1 Interrupt
5. Serial Interrupt

The Bus Arbitration

When there are more than one device need interrupt service then they have to be connected in
specific manner. The processor responds to each one of them. This is called Arbitration. The
method can be divided into following

• Priority Arbiter
• Daisy Chain Arbiter

Version 2 EE IIT, Kharagpur 9

Priority Arbiter

μC

Priority
arbiter

Peripheral
1

System bus

Int
3

5
7

Inta
Peripheral

2

Ireq1

Iack2

Iack1

Ireq2

2 2

6

Fig. 15.5 The Priority Arbitration

Let us assume that the Priority of the devices are Device1 > Device 2 …

1. The Processor is executing its program.
2. Peripheral1 needs servicing so asserts Ireq1. Peripheral2 also needs servicing so asserts

Ireq2.
3. Priority arbiter sees at least one Ireq input asserted, so asserts Int.
4. Processor stops executing its program and stores its state.
5. Processor asserts Inta.
6. Priority arbiter asserts Iack1 to acknowledge Peripheral1.
7. Peripheral1 puts its interrupt address vector on the system bus
8. Processor jumps to the address of ISR read from data bus, ISR executes and returns(and

completes handshake with arbiter).

Thus in case of simultaneous interrupts the device with the highest priority will be served.

Daisy Chain Interrupts

In this case the peripherals needing interrupt service are connected in a chain as shown in
Fig.15.6. The requests are chained and hence any device interrupting shall be transmitted to the
CPU in a chain.

Let us assume that the Priority of the devices are Device1 > Device 2 …

1. The Processor is executing its program.
2. Any Peripheral needs servicing asserts Req out. This Req out goes to the Req in of the

subsequent device in the chain
3. Thus the peripheral nearest to the μC asserts Int.
4. The processor stops executing its program and stores its state.
5. Processor asserts Inta the nearest device.
6. The Inta passes through the chain till it finds a flag which is set by the device which has

generated the interrupt.
7. The interrupting device sends the Interrupt Address Vector to the processor for its

interrupt service subroutine.

Version 2 EE IIT, Kharagpur 10

8. The processor jumps to the address of ISR read from data bus, ISR executes and returns.
9. The flag is reset.

The processor now check for the next device which has interrupted simultaneously.

μC System bus

Int
Inta

Peripheral 2
Ack_in Ack_out
Req_out Req_in 0

Peripheral 1
Ack_in Ack_out
Req_out Req_in

Fig. 15.6 The Daisy Chain Arbitration

In this case The device nearest to the processor has the highest priority

The service to the subsequent stages is interrupted if the chain is broken at one place.

Handling a number of Interrupts by Intel 8259 Programmable
Interrupt Controller

The Programmable Interrupt Controller (PlC) functions as an overall manager in an Interrupt-
Driven system. It accepts requests from the peripheral equipment, determines which of the
incoming requests is of the highest importance (priority), ascertains whether the incoming
request has a higher priority value than the level currently being serviced, and issues an interrupt
to the CPU based on this determination.

ROM

RAM

CPU
INT

I/O (1)

I/O (2)

I/O (N)

Fig. 15.7 Handling a number of interrupts

PIC

Version 2 EE IIT, Kharagpur 11

Each peripheral device or structure usually has a special program or “routine” that is associated
with its specific functional or operational requirements; this is referred to as a “service routine”.
The PlC, after issuing an interrupt to the CPU, must somehow input information into the CPU
that can point (vector) the Program Counter to the service routine associated with the requesting
device.

The PIC manages eight levels of requests and has built-in features for expandability to other PIC
(up to 64 levels). It is programmed by system software as an I/O peripheral. The priority modes
can be changed or reconfigured dynamically at any time during main program operation.

Interrupt Request Register (IRR) and In-Service Register (ISR)

The interrupts at the IR input lines are handled by two registers in cascade, the Interrupt Request
Register (lRR) and the In- Service Register (lSR). The IRR is used to indicate all the interrupt
levels which are requesting service, and the ISR is used to store all the interrupt levels which are
currently being serviced.

Priority Resolver

This logic block determines the priorities of the bits set in the lRR. The highest priority is
selected and strobed into the corresponding bit of the lSR during the INTA sequence.

Interrupt Mask Register (IMR)

The lMR stores the bits which disable the interrupt lines to be masked. The IMR operates on the
output of the IRR. Masking of a higher priority input will not affect the interrupt request lines of
lower priority.

Data Bus Buffer

This 3-state, bidirectional 8-bit buffer is used to interface the PIC to the System Data Bus.
Control words and status information are transferred through the Data Bus Buffer.

Read/Write Control Logic

The function of this block is to accept output commands from the CPU. It contains the
Initialization Command Word (lCW) registers and Operation Command Word (OCW) registers
which store the various control formats for device operation. This function block also allows the
status of the PIC to be transferred onto the Data Bus. This function block stores and compares
the IDs of all PICs used in the system. The associated three I/O pins (CAS0- 2) are outputs when
the 8259 is used as a master and are inputs when the 8259 is used as a slave. As a master, the
8259 sends the ID of the interrupting slave device onto the CAS0 - 2 lines. The slave, thus
selected will send its preprogrammed subroutine address onto the Data Bus during the next one
or two consecutive INTA pulses.

Version 2 EE IIT, Kharagpur 12

D[7..0]
A[0..0]

RD
WR
INT

INTA

CAS[2..0]
SP/EN

IR0
IR1
IR2
IR3
IR4
IR5
IR6
IR7

Intel 8259

Fig. 15.8 The 8259 Interrupt Controller

DATA
BUS

BUFFER

READ/
WRITE
LOGIC

CASCADE
BUFFER

COMPARATOR

INTA INT

CONTROL LOGIC

IR0
IR1
IR2
IR3
IR4
IR5
IR6
IR7

IN-
SERVICE

REG
(ISR)

PRIORITY
RESOLVER

INTERRUPT
REQUEST

REG
(IRR)

INTERRUPT MASK REG
(IMR)

INTERNAL BUS

RD
WR
A0

CS

CAS 0
CAS 1
CAS 2

SP/EN

D7-D0

Fig. 15.9 The Functional Block Diagram

Table of Signals of the PIC

Signal Description

D[7..0] These wires are connected to the system bus and are used by the
microprocessor to write or read the internal registers of the 8259.

A[0..0] This pin acts in conjunction with WR/RD signals. It is used by
the 8259 to decipher various command words the microprocessor
writes and status the microprocessor wishes to read.

WR When this write signal is asserted, the 8259 accepts the command
on the data line, i.e., the microprocessor writes to the 8259 by
placing a command on the data lines and asserting this signal.

RD When this read signal is asserted, the 8259 provides on the data
lines its status, i.e., the microprocessor reads the status of the
8259 by asserting this signal and reading the data lines.

INT This signal is asserted whenever a valid interrupt request is
received by the 8259, i.e., it is used to interrupt the
microprocessor.

Version 2 EE IIT, Kharagpur 13

INTA This signal, is used to enable 8259 interrupt-vector data onto the
data bus by a sequence of interrupt acknowledge pulses issued by
the microprocessor.

IR 0,1,2,3,4,5,6,7 An interrupt request is executed by a peripheral device when one
of these signals is asserted.

CAS[2..0] These are cascade signals to enable multiple 8259 chips to be
chained together.

SP/EN This function is used in conjunction with the CAS signals for
cascading purposes.

Fig.15.10 shows the daisy chain connection of a number of PICs. The extreme right PIC
interrupts the processor. In this figure the processor can entertain up to 24 different interrupt
requests. The SP/EN signal has been connected to Vcc for the master and grounded for the
slaves.

ADDRESS BUS (16)

CONTROL BUS

DATA BUS (8)

INTERRUPT REQUESTS

INT REQ

GND 7 6 5 4 3 2 1 0

SP/EN 7 6 5 4 3 2 1 0

CS A0 D7 – D0 INTA INT

82C59A SLAVE A CAS 0
CAS 1
CAS 2

GND 7 6 5 4 3 2 1 0

CS A0 D7 – D0 INTA INT

82C59A SLAVE B

VCC 7 6 5 4 3 2 1 0

CS A0 D7 – D0 INTA INT

82C59A MASTER

SP/EN 7 6 5 4 3 2 1 0 SP/EN 7 6 5 4 3 2 1 0

CAS 0
CAS 1
CAS 2

CAS 0
CAS 1
CAS 2

Fig. 15.10 Nested Connection of Interrupts
Software Interrupts

These are initiated by the program by specific instructions. On encountering such instructions the
CPU executes an Interrupt service subroutine.

Conclusion

 In this chapter you have learnt about the Interrupts and the Programmable Interrupt
Controller. Different methods of interrupt services such as Priority arbitration and Daisy Chain
arbitration have been discussed. In real time systems the interrupts are used for specific cases
and the time of execution of these Interrupt Service Subroutines are almost fixed. Too many
interrupts are not encouraged in real time as it may severely disrupt the services. Please look at
problem no.1 in the exercise.

 Most of the embedded processors are equipped with an interrupt structure. Rarely there is a
need to use a PIC. Some of the entry level microcontrollers do not have an inbuilt exception

Version 2 EE IIT, Kharagpur 14

handler called trap. The trap is also an interrupt which is used to handle some extreme processor
conditions such as divide by 0, overflow etc.

Question Answers

Q1. A computer system has three devices whose characteristics are summarized in the following

table:

Device Service
Time

Interrupt
Frequency

Allowable
Latency

D1 150μs 1/(800μs) 50μs
D2 50μs 1/(1000μs) 50μs
D3 100μs 1/(800μs) 100μs

Service time indicates how long it takes to run the interrupt handler for each device. The
maximum time allowed to elapse between an interrupt request and the start of the interrupt
handler is indicated by allowable latency. If a program P takes 100 seconds to execute when
interrupts are disabled, how long will P take to run when interrupts are enabled?

Ans:

The CPU time taken to service the interrupts must be found out. Let us consider Device 1. It
takes 400 μs to execute and occurs at a frequency of 1/(800μs) (1250 times a second). Consider a
time quantum of 1 unit.

The Device 1 shall take (150+50)/800= 1/4 unit
The Device 2 shall take (50+50)/1000=1/10 unit
The Device 3 shall take (100+100)/800=1/4 unit

In one unit of real time the cpu time taken by all these devices is (1/4+1/10+1/4) = 0.6 units

The cpu idle time 0.4 units which can be used by the Program P. For 100 seconds of CPU time
the Real Time required will be 100/0.4= 250 seconds

Q.2 What is TRAP?

Ans:

The term trap denotes a programmer initiated and expected transfer of control to a special
handler routine. In many respects, a trap is nothing more than a specialized subroutine call.
Many texts refer to traps as software interrupts. Traps are usually unconditional; that is, when
you execute an Interrupt instruction, control always transfers to the procedure associated with
the trap. Since traps execute via an explicit instruction, it is easy to determine exactly which
instructions in a program will invoke a trap handling routine.

Version 2 EE IIT, Kharagpur 15

Q.3. Discuss about the Interrupt Acknowledge Machine Cycle.

Ans:

For vectored interrupts the processor expects the address from the external device. Once it
receives the interrupt it starts an Interrupt acknowledge cycle as shown in the figure. In the
figure TN is the last clock state of the previous instruction immediately after which the processor
checks the status of the Intr pin which has already become high by the external device. Therefore
the processor starts an INTA cycle in which it brings the interrupt vector through the data lines.
If the data lines arte 8-bits and the address required is 16 bits there will be two I/O read. If the
interrupt vector is a number which will be vectored to a look up table then only 8-bits are
required and hence one I/O read will be there.

Address code

Interrupt Acknowledge machine cycle Last machine cycle
of instruction

Data

INTACK

INTREQ

CLK

TN T1 T2 T3

Version 2 EE IIT, Kharagpur 16

Aayisha
Typewritten Text
Source:http://www.nptel.ac.in/courses/Webcourse-contents/IIT%20Kharagpur/Embedded%20systems/Pdf/Lesson-15.pdf

	Embedded Systems I/O
	Interrupts
	Instructional Objectives
	Pre-Requisite
	Introduction
	Types of Interrupts
	PC-Program counter, P1-Port 1 P2-Port 2, μC-Microcontroller
	Interrupts in a Typical Microcontroller (say 8051)
	Interrupt Enables
	Interrupt Priorities
	The Bus Arbitration
	Priority Arbiter
	Daisy Chain Interrupts
	Handling a number of Interrupts by Intel 8259 Programmable Interrupt Controller
	Interrupt Request Register (IRR) and In-Service Register (ISR)
	Priority Resolver
	Interrupt Mask Register (IMR)
	Data Bus Buffer
	Read/Write Control Logic
	Software Interrupts
	Conclusion
	Question Answers

