
HEAT ENGINES 

 
We've discussed in any detail has been a fictitious Carnot engine, with a 

monoatomic ideal gas as its working gas. As a more realistic example, 

figure l shows one full cycle of a cylinder in a standard gas-burning automobile 

engine. This four-stroke cycle is called the Otto cycle, after its inventor, German 

engineer Nikolaus Otto. The Otto cycle is more complicated than a Carnot cycle, in 

a number of ways: 

 The working gas is physically pumped in and out of the cylinder through valves, 

rather than being sealed and reused indefinitely as in the Carnot engine. 

 The cylinders are not perfectly insulated from the engine block, so heat energy is 

lost from each cylinder by conduction. This makes the engine less efficient that a 

Carnot engine, because heat is being discharged at a temperature that is not as cool 

as the environment. 

 Rather than being heated by contact with an external heat reservoir, the air-gas 

mixture inside each cylinder is heated by internal combusion: a spark from a spark 

plug burns the gasoline, releasing heat. 

 The working gas is not monoatomic. Air consists of diatomic molecules 

(N2 and O2), and gasoline of polyatomic molecules such as octane (C8H18). 

http://physwiki.ucdavis.edu/Fundamentals/05._Thermodynamics/5.5_More_About_Heat_Engines#fig:otto-cycle


 The working gas is not ideal. An ideal gas is one in which the molecules never 

interact with one another, but only with the walls of the vessel, when they collide 

with it. In a car engine, the molecules are interacting very dramatically with one 

another when the air-gas mixture explodes (and less dramatically at other times as 

well, since, for example, the gasoline may be in the form of microscopic droplets 

rather than individual molecules). 

This is all extremely complicated, and it would be nice to have some way of 

understanding and visualizing the important properties of such a heat engine 

without trying to handle every detail at once. A good method of doing this is a type 

of graph known as a P-V diagram. As proved in homework problem 2, the 

equation dW=Fdx for mechanical work can be rewritten as dW=PdV in the case of 

work done by a piston. Here P represents the pressure of the working gas, and V its 

volume. Thus, on a graph of P versus V, the area under the curve represents the 

work done. When the gas expands, dx is positive, and the gas does positive work. 

When the gas is being compressed, dx is negative, and the gas does negative work, 

i.e., it absorbs energy. 

Notice how, in the diagram of the Carnot engine in the top panel of figure a, the 

cycle goes clockwise around the curve, and therefore the part of the curve in which 

negative work is being done (arrowheads pointing to the left) are below the ones in 

which positive work is being done.  

http://physwiki.ucdavis.edu/Fundamentals/05._Thermodynamics/5.5_More_About_Heat_Engines#hw:work-pdv
http://physwiki.ucdavis.edu/Fundamentals/05._Thermodynamics/5.5_More_About_Heat_Engines#fig:pv-for-carnot-and-otto


 

a / P-V diagrams for a Carnot engine and an Otto engine. 

This means that over all, the engine does a positive amount of work. This network 

equals the area under the top part of the curve, minus the area under the bottom 

part of the curve, which is simply the area enclosed by the curve. Although the 

diagram for the Otto engine is more complicated, we can at least compare it on the 

same footing with the Carnot engine. The curve forms a figure-eight, because it 

cuts across itself.  



The top loop goes clockwise, so as in the case of the Carnot engine, it represents 

positive work. The bottom loop goes counterclockwise, so it represents a net 

negative contribution to the work. This is because more work is expended in 

forcing out the exhaust than is generated in the intake stroke. 

To make an engine as efficient as possible, we would like to make the loop have as 

much area as possible. What is it that determines the actual shape of the curve? 

First let's consider the constant-temperature expansion stroke that forms the top of 

the Carnot engine's P-V plot. This is analogous to the power stroke of an Otto 

engine. Heat is being sucked in from the hot reservoir, and since the working gas is 

always in thermal equilibrium with the hot reservoir, its temperature is constant. 

Regardless of the type of gas, we therefore have PV=nkT with T held constant, and 

thus P∝V−1 is the mathematical shape of this curve --- a y=1/x graph, which is a 

hyperbola. This is all true regardless of whether the working gas is monoatomic, 

diatomic, or polyatomic. (The bottom of the loop is likewise of the form P∝V−1, 

but with a smaller constant of proportionality due to the lower temperature.) 

Now consider the insulated expansion stroke that forms the right side of the curve 

for the Carnot engine. As shown on page 324, the relationship between pressure 

and temperature in an insulated compression or expansion is T∝Pb, with b=2/5, 

2/7, or 1/4, respectively, for a monoatomic, diatomic, or polyatomic gas.  



For P as a function of V at constant T, the ideal gas law gives P∝T/V, so P∝V−γ, 

where γ=1/(1−b) takes on the values 5/3, 7/5, and 4/3. The number γ can be 

interpreted as the ratio CP/CV, where CP, the heat capacity at constant pressure, is 

the amount of heat required to raise the temperature of the gas by one degree while 

keeping its pressure constant, and CV is the corresponding quantity under 

conditions of constant volume. 

We have already seen, based on the microscopic nature of entropy, that any Carnot 

engine has the same efficiency, and the argument only employed the assumption 

that the engine met the definition of a Carnot cycle: two insulated strokes, and two 

constant-temperature strokes. Since we didn't have to make any assumptions about 

the nature of the working gas being used, the result is evidently true for diatomic or 

polyatomic molecules, or for a gas that is not ideal. This result is surprisingly 

simple and general, and a little mysterious --- it even applies to possibilities that we 

have not even considered, such as a Carnot engine designed so that the working 

“gas” actually consists of a mixture of liquid droplets and vapor, as in a steam 

engine. How can it always turn out so simple, given the kind of mathematical 

complications that were swept under the rug in example 22? A better way to 

understand this result is by switching from P-V diagrams to a diagram of 

temperature versus entropy, as shown in figure e. 
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e / A T-S diagram for a Carnot engine.  

An infinitesimal transfer of heat dQ gives rise to a change in entropy dS=dQ/T, so 

the area under the curve on a T-S plot gives the amount of heat transferred. The 

area under the top edge of the box in figure e, extending all the way down to the 

axis, represents the amount of heat absorbed from the hot reservoir, while the 

smaller area under the bottom edge represents the heat wasted into the cold 

reservoir. By conservation of energy, the area enclosed by the box therefore 

represents the amount of mechanical work being done, as for a P-V diagram. We 

can now see why the efficiency of a Carnot engine is independent of any of the 

physical details: the definition of a Carnot engine guarantees that the T-S diagram 

will be a rectangular box, and the efficiency depends only on the relative heights of 

the top and bottom of the box. 

Source: 
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