
SERIAL COMMUNICATION 

Introduction 

Embedded electronics is all about interlinking circuits (processors or other 

integrated circuits) to create a symbiotic system. In order for those individual 

circuits to swap their information, they must share a common communication 

protocol. Hundreds of communication protocols have been defined to achieve this 

data exchange, and, in general, each can be separated into one of two categories: 

parallel or serial. 

Parallel vs. Serial 

Parallel interfaces transfer multiple bits at the same time. They usually 

require buses of data - transmitting across eight, sixteen, or more wires. Data is 

transferred in huge, crashing waves of 1’s and 0’s. 

 

An 8-bit data bus, controlled by a clock, transmitting a byte every clock pulse. 9 wires are used. 

https://dlnmh9ip6v2uc.cloudfront.net/assets/c/a/c/3/a/50e1cca6ce395fbc27000000.png


Serial interfaces stream their data, one single bit at a time. These interfaces can 

operate on as little as one wire, usually never more than four. 

 

Example of a serial interface, transmitting one bit every clock pulse. Just 2 wires required! 

Think of the two interfaces as a stream of cars: a parallel interface would be the 8+ 

lane mega-highway, while a serial interface is more like a two-lane rural country 

road. Over a set amount of time, the mega-highway potentially gets more people to 

their destinations, but that rural two-laner serves its purpose and costs a fraction of 

the funds to build. 

Parallel communication certainly has its benefits. It’s fast, straightforward, and 

relatively easy to implement. But it requires many more input/output (I/O) lines. If 

you’ve ever had to move a project from a basic Arduino Uno to a Mega, you know 

that the I/O lines on a microprocessor can be precious and few. So, we often opt 

for serial communication, sacrificing potential speed for pin real estate. 

 

 

 

https://www.sparkfun.com/products/11021
https://www.sparkfun.com/products/11061
https://dlnmh9ip6v2uc.cloudfront.net/assets/e/5/4/2/a/50e1ccf1ce395f962b000000.png


Asynchronous Serial 

Over the years, dozens of serial protocols have been crafted to meet particular 

needs of embedded systems. USB (universal serial bus), and Ethernet, are a couple 

of the more well-known computing serial interfaces. Other very common serial 

interfaces include SPI, I
2
C, and the serial standard we’re here to talk about today. 

Each of these serial interfaces can be sorted into one of two groups: synchronous 

or asynchronous. 

A synchronous serial interface always pairs its data line(s) with a clock signal, so 

all devices on a synchronous serial bus share a common clock. This makes for a 

more straightforward, often faster serial transfer, but it also requires at least one 

extra wire between communicating devices. Examples of synchronous interfaces 

include SPI, and I
2
C. 

 

 

 

 

 

 



Asynchronous means that data is transferred without support from an external 

clock signal. This transmission method is perfect for minimizing the required 

wires and I/O pins, but it does mean we need to put some extra effort into reliably 

transferring and receiving data. The serial protocol is the most common form of 

asynchronous transfers. It is so common, in fact, that when most folks say “serial” 

they’re talking about this protocol. The clock-less serial protocol is widely used in 

embedded electronics. If you’re looking to add a GPS module, Bluetooth, XBee’s, 

serial LCDs, or many other external devices to your project, you’ll probably need 

to whip out some serial-fu. 

 

 

Source: https://learn.sparkfun.com/tutorials/serial-communication 

 


