Elliptical Orbits

So far, we've examined the methods by which several properties of stars can be
measured: distance, luminosity, temperature, size. Another fundamental property of a
star, or any celestial object, is its mass. How can one measure the mass of a star? It
turns out that one must find a star which is in orbit around another star(s) and use
gravity as a tool to turn orbital motion into mass.

But it's a complicated subject. Let's start off with a simple example of orbital motion —-
planets in our own solar system -- and work our way up to the more complex cases of
distant stars.

Kepler's First Law: shape of the orbit

Johannes Kepler was a brilliant mathematician who lived in the late sixteenth and early
seventeenth century, a contemporary of Tycho Brahe, Galileo, and Queen Elizabeth I. In
order to gain access to the best measurements of planetary motions in the world, he
became Tycho Brahe's assistant; his job was not to make the observations, but to
analyze them. After Tycho's death in 1601, Kepler spent years working on the great
mass of measurements Tycho had acquired.

In 1609, Kepler published a book, Nova Astronomica, in which he made a revolutionary
claim: planets don't move in CIRCLES, as everyone had previously thought (including
Copernicus); instead,

Kepler's First Law: the planets move in ellipses, with the Sun at one focus.

Let's pause to consider the properties of an ellipse. There are several ways to define
this shape:

1. The locus of all points which lie a fixed sum of distances away from two foci.

2. Stick two pins into a piece of paper, and place a loop of string loosely around
the pins. Now hold a pen inside the loop and pull outwards until it stretches the
string taut. Move the pen around the pins, always keeping the string stretched
tightly.

3. In a cartesian coordinate system with axes x and y,
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4. In a polar coordinate system,
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Below is a sample ellipse drawn on a background grid. Mark on your piece of paper the
following quantities; make all measurements in units of the grid spacing.



Measure the semimajor axis a
2. Measure the semiminor axis b

b? = a?(1 — e%)
3. Calculate the eccentricity e using the formula
4. Calculate the positions of the two foci. Each one lies along the semimajor axis, a
distance ae from the center of the ellipse.
5. Mark the two foci. Call the right-hand focus the "principal focus," and draw the
Sun at that position.
6. Calculate the perihelion distance and the aphelion distance.

Kepler's Second Law: motion around the orbit

Using Tycho's careful measurements of the position of Mars in our sky, Kepler was able
to find a second "imperfection" in the motions of the planets. Not only did they move
in ellipses (instead of circles), but their speed was not constant! Instead, the planets



move quickly when close to the Sun and slowly when far from the Sun. A nice
geometric description is

Kepler's Second Law: A line connecting a planet to the Sun sweeps out equal areas in
equal times.

Use this rule on your paper:

. The planet moves exactly 4 grid units along its orbit at aphelion during time

period T. Mark the starting and ending points of this interval on the orbit. Draw
the triangle which describes the area swept out during this interval (the apex of
the triangle should be the Sun).

2. What is the area of this triangle?

. Consider a time interval T centered on the planet's passage across the

semiminor axis of the orbit. How far along its orbit will the planet move during
this interval? Mark the starting and ending points of this interval, and draw the
triangle swept out.

. Consider a time interval T centered on the planet's passage through perihelion.

How far along its orbit will the planet move during this interval? Mark the
starting and ending points of this interval, and draw the triangle swept out.
(Approximate values are okay).

. What is the ratio of orbital speed at perihelion compared to orbital speed at

aphelion for this orbit?

Note that Kepler's Second Law is nice, but it deals only with RELATIVE speeds. We can't
use it directly to figure out exactly how far a planet will move over a period of, say,
three weeks. Is there any way to figure out exactly where a planet will be at some
particular time?

Yes —-- two ways, in fact:

classical approach -- Kepler's equation
modern approach -- brute-force numerical integration

Thanks to fast, cheap computers, we members of the modern world can simply plug
some initial conditions into a computer program and integrate the motion of the
bodies numerically to follow their motion as a function of time. One of the problems
on this week's homework asks you to do just that.



Back in the old days, however, computing wasn't quite so cheap and easy. Kepler didn't
have computers or calculators. In fact, Kepler didn't even have LOGARITHMS; Napier
published his first tables in 1632, after Kepler had derived his laws of planetary
motion. Kepler did manage to devise a method of computing the position of a planet at
any time. It involved a bit of calculating, but nowhere near as much as the modern
brute-force approach. Since it's an interesting little mathematical puzzle, let's look at it
in some detail.

Kepler's equation for motion around an orbit

The problem is this: we know the orbital parameters of a planet's motion around the
Sun: period P, semimajor axis a, eccentricity e. We also know the time T when the
planet reaches its perihelion passage. Where will the planet be in its orbit at some later
time t?

If the orbit is circular, then this is easy: the fraction of a complete orbit is equal to the
fraction of a complete period which has elapsed since the last perihelion passage. For
example, if (t - T) is exactly one-quarter of the period P, then the planet will have
made exactly one-quarter of a full circle around the Sun.

But, as Kepler's Second Law states, planets in elliptical orbits do NOT move with a
constant speed, nor with a constant angular speed. In real life, some planetary orbits
are significantly non-circular, so the circular approximation won't work. What can we
do?

We can measure the position of a planet in its elliptical orbit with the angle between its
radius vector and the perihelion position. This angle is called the true anomaly, and is
conventionally written as the letter v.

Yes, I've moved the principal focus closer to the center of the circle than it should be,
for clarity.



What is v as a function of time t?

Kepler found an answer to this question, but it required a bit of a roundabout journey.
He discovered that if he defined a "auxiliary" quantity, he could solve for that quantity

as a function of time; and then he could convert from the "auxiliary" quantity to the
desired true anomaly v.

Kepler's first step was to draw a circle around the ellipse, and project the position of
the planet on its elliptical orbit upwards to meet the circle.



The angle E measured from perihelion position, to center of circle, to projected
position of planet, is called the eccentric anomaly. If one can find E, one can go back to
the desired variables r and v like so:

r=a(l —ecos F)
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Kepler's next step was to find a mathematical relationship between this eccentric
anomaly E and time. He computed n, the average angular speed of the planet, also
called the mean motion,

You should express the mean motion, and all angular quantities involved in Kepler's

equation, in radians.

Finally, he was able to write the following, known as Kepler's equation:
E—esin(F)=(t—-T)n

Looks good, right? You have to go through several steps:

e find the time of perihelion passage T

e calculate the mean motion n

e solve Kepler's equation for the eccentric anomaly E
e convert to the true anomaly v and radius vector r

but it's not so bad, is it?



Actually, it is. Step 3, solving Kepler's equation for E given some time difference (t - T),
turns out to be a doozy. here is no simple closed-form solution, in general, though
there are series solutions which converge quickly for small values of the eccentricity.
Astronomer Friedrich Bessel devised his eponymous "Bessel Functions"in 1817 as a
means to solve Kepler's equation. Letting M = (t — T) n (this is known as the "mean
anomaly") one can write

— 2
E=M+Y - Jis(ke) sin (kM)
k=1

where Jk is the k'th Bessel function of the first kind.

Fortunately, even though there isn't a closed solution, Kepler's equation yields pretty
quickly to any number of numerical attacks, especially when the eccentricity e is small.
You can program a computer to use Newton's method or the the bisection
technique. You can even fall back on trial and error. Give it a try.

Exercise: Your piece of paper shows an elliptical orbit. Suppose that the orbit is P =
500 days in a counterclockwise direction. Where will the planet be at(t - T) = 400
days after perihelion passage? Calculate the true anomaly angle v and use it to mark
the position of the planet along the orbit.

Start by finding the mean motion n and the mean anomaly M = n(t - T). Use a starting
guess that the eccentric anomaly E is equal to the mean anomaly. Plug that E into the
left-hand side of Kepler's equation and see what you get. If you get exactly M, you're
done! Otherwise, modify your value of E and try again. See if you can find E to four
significant figures.

Source: http://spiff.rit.edu/classes/phys440/lectures/ellipse/ellipse.html
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