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ABSTRACT: This paper describes a study of operational parameters by using the multivariate data analysis
and neural networks for a municipal waste incinerator located in Majorca (Spain). The basis of the study also
includes the chemometric techniques: linear multivariate regression to develop a model with certain predictive
capabilities; linear principal component analysis, which allow the number of variables to be reduced from 17
to 4, thus fostering visualization in a low-dimension space; and linear discriminant analysis to categorize plant
data accordingto the month (probability ≈ 70%). Neural network predictive capability was good, with relative
errors around 6-8%. These techniques allow all the variables to be analysed simultaneously and focus on the
variables which have a significant impact. In this way, the interrelationships between sets of variables, causal
relations among input/output variables, seasonal motivated deviations as well as observation variations have
been identified.
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INTRODUCTION
Municipal waste management (MWI) covers certain

procedures including re-utilization, recycling, landfill
disposal, composting, and a variety of combustion
processes. Combustion, commonly known as incineration,
consists of a controlled oxidation process in which
chemical reactions transform carbon species into CO2.
Recently, waste incineration has been a subject of public
concern since it leads to the emission of pollutants such
as acid gases, particulate matter, nitrogen oxides, heavy
metals, and highly toxic trace organic compounds (dioxins
and dibenzofurans) to the air, land, and water (Vargas-
Vargas et al., 2010). The main advantages of incineration
are the reduction of waste (≈ 75% in weight,  90% in
volume), the valorization of municipal solid wastes (MSW)
by the electric power generated (savings of ≈ 0.05 ton of
petrol per ton of MSW) and the almost immediate disposal
procedure. Waste management is one of the major problems
for modern societies and many works have been published
focussing on the analysis of contamination data in water
(Christophersen and Hooper 1991; Ennis and Bi 2000;

Menció et al., 2008; Ortiz-Estarelles et al., 2001; Ragno
et al., 2007; Sarparastzadeh et al., 2007; Subagyono et
al., 2005), in sediments (Ausili et al., 1999; Götz  et al.,
1988; Mildner-Szkudlarz et al., 2008; Nhan et al., 2006;
Shine et al., 1995; Sprovieri 2007), in solids (Jalili and
Noori 2008;  Sadugh et al., 2009), and the effect on human
health (Abad et al., 2002; Costabeber et al., 2003;
Fabrellas et al., 1999; van Oostdam et al., 2004; Wingfors
et al., 2000).

The operation of waste treatment processes is a
difficult task due to the great uncertainty in the MSW
composition. Further, legal requirements are continually
tightening the permitted emissions and it is important to
improve predictive control strategies and quick checklists.
In this work, an approach to assess the plant operation
and management by off-line calculations without
disturbing routine operation has been obtained. The main
idea is that by applying the multivariate statistical methods
and neural networks to the municipal waste incinerator
of Son Reus (Majorca, Spain), some predictive guidelines
for the operational variables directly related with the
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furnace, the boiler and the turbine, can be provided.
Moreover, relationships that are not self-evident (e. g. if
several variables are highly correlated, by analyzing some
of them, the value for the rest can be inferred) and the
way data group in the multivariate space is also
investigated in order to asses normal operation
conditions.

MATERIALS & METHODS
Palma is the major city in Majorca island, which is

situated about 350 km from the continent in the
Mediterranean sea. In addition to the insularity, Majorca
has a high seasonal activity due to tourism, and in certain
periods, the MSW go directly to landfill (i. e. over 8 million
tourists, most of them during summer). Thus, the waste
management is based on the classical 4R’s approach
(reduce, reuse, recycle and recover). In Spain, MSW
produced in 1997-200 was estimated at 1.56·107 tons, which
means that each inhabitant produces 1.05 kg of waste per
day (Abad et al., 2002). In Majorca, the production of
MSW is higher than the Spanish average, and it rose
from 3.0·105 tons in 1990, to 3.5·105 tons in 1994, to 4.2·105

tons in 1997, which means around 1.5 kg per person per
day. It is estimated that around 45% of residues end up in
uncontrolled landfills (TIRME 2009). The typical MSW
in Majorca composition is: 39.8% organic matter, 19.9%
paper, 12.2% plastic, 10.9% glass, 8.1% textiles, 4.3%
metals, 4.8% inert matter and 0.08% batteries (TIRME
2009, Greenpeace 1995).

In Spain, 5.42·105 tons of MSW were incinerated in
1985 and in 1996 this value was 7.05·105 tons (Greenpeace
1995). The total waste treated thermally rose to 1.16·105

tons in 1997, which represents around 16.5% of the total
Spanish MSW (Abad et al., 2002, Fabrellas et al., 1999).
The annual capacity of the MWI plant under study, called
Son Reus, represents approximately 58% of the total
MSW treated in Majorca and produces around 7% of the
electricity consumed in the island. Such a high value is
due to the insularity of Majorca. The Son Reus MWI was
designed for a waste production of 1.5 kg per day and
person, assuming a 5% increase between 1992-2000 and
2% for the following years. The incinerator plant operation
started in 1996, with a cost of 9.0·107 € (TIRME 2009). The
management was carried out by the company TIRME
S.A. (Tirme 2009), according to the relevant regulation
code (Real Decreto 1088/92, Spanish Government and
the Guideline 88/369, European Union).

The plant is located 12 km North from the already
city of Majorca. There are major tourist resources and
industrial areas in the surroundings. The overall
aspects of the MWI are shown in Table 1.

Table 1. Technical profile of the Son Reus MWI
(per incineration unit)

Incineration units 2 

Therm al c apacity/M W 45.15 
Capacity/tons·day-1 18.75 
Calor ific power of MSW/ kcal·kg-1 1530-2070 
Combustion air/Nm³·h-1 77.57 
Maximum steam production/kg·h-1 50200 
Steam pressure/bar 40 
Steam temperature/°C  400 
Boiler output ga s temperature/°C 180-200 
Maximum power/M W·h 42.6 
Gas flow/Nm3·h-1 100000 
Production of a shes/tons·day-1 0.30 
Production of sla g/tons·day-1 4.0 

 
operational parameters (e. g. a minimum of 8% v/v oxygen,
a minimum of 850oC and 2 seconds of residence time in the
furnace). The MWI has gas-oil auxiliary burners for the
start-up and shut-down, which are not used in normal
operation. Slag is water-cooled and used as filling material
in construction (C), while metals are recycled. The steam
boiler (D) has a capacity of 50 tons·h-1 per line. The water
loop connects the steam boilers with the turbine and
alternator (D1). The surplus of electricity generated (the
process consumes 4 MW·h) is distributed through the
electricity network (D2). Water is condensed with an air
condenser (D3) and recycled to the boiler. After that, a
semi-dry absorber with lime (E) is used to remove acid
gases and heavy metals. Also, active carbon is injected (F)
to remove volatile metals (mercury and cadmium) and
volatile organic components (phenols, PCDDs, dioxins and
furanes). Then, gases go through the bag filters (G) to
remove any fly ash. Finally, gases are released from the
stack (H). A small percentage of the ash (I) is reintroduced
into the scrubbing system to improve its performance, while
its final disposal is stabilization/solidification with cement.
The layout of the plant presents two identical incineration
units and a unique gas-cleaning system (Fig. 1).

The public taxes are calculated according to the MSW,
the operating costs, the electric power generated as well
as the pay-off of the MWI. Due to the MSW heterogeneity,
it is almost impossible to analytically and quantitatively
characterize their composition and therefore the energy
produced in the MWI has a high uncertainty. The key
aspect is the accurate prediction of the calorific power
(CP, computed at 1 atm and 25oC) from the MSW, as it is
the variable used to describe the raw material. At the
moment, these calculations are performed from the mass
and energy balance. In this general framework the
influence of each variable and their complex interactions
can not be properly fixed.

The MSW from the waste bunker (A) is introduced
into the roller-grate furnace (B). The process is controlled
using a distributed control system to ensure some



Int. J. Environ. Res., 5(3):639-650, Summer 2011

641

 

 
Fig. 1. Schematic representation of the Son Reus MWI: A: bunker waste; B: furnace; C: slag; D: boiler, D1: turbine,
D2: alternator, D3: electricity network, and D4: air condenser; E: semi-dry absorber; F: activated carbon injection; G:

bag filter; H: stack; and I: fly ash

An emission and inmision plan has been done and all
parameters are clearly below legal limits (Real Decreto
1088/92 from the Spanish Government and guideline 88/
369 from the European Union).

The purpose of this paper is to survey the basic
principles and methods of multivariate data analysis for
plant data (Brereton 1999, Gnanadesikan 1977, Manly 2004,
Morrison 2002). The main strength of multivariate analysis
is the discovery of the correlation structure of the data
that is not self-evident in the multivariable space (e. g.
due to redundant information). Also, it is of considerable
aid in detecting similarities, differences, and relationships
among the variables (Boente G. and Fraiman 2000, Mertler
and Vannatta 2004, Montgomery 1998, Rene and Saidutta
2008, Ross 1999). Whether these variables should be
measured in the plant for security/legal considerations is
not considered in this work. As multivariate analysis
becomes more common, the dangers of its misuse also
increase (Ocaña et al., 1999, Parinet et al., 2004, Sparks et
al., 1999, Zitko 1994). In this case, the analyses were
performed using SPSS™ (SPSS 2007).

There are no strict rules about how to pre-process a
data set before multivariate projection analysis. Usually,
to eliminate the effect of widely different levels among
the variables (e.g. different units) are centered by

subtracting the mean and rescaled by dividing by its
standard deviation. These normalization procedures give
equal weight to each variable and avoid dominating the
analysis with variables with large variances.

The objective of linear multivariate regression (LMR)
is to establish the relationship between the variables and
obtain a model with predictive capabilities to estimate the
CP. The step-wise procedure with the Pearson coefficient
to assess the significance of each input variable was used
(Equation i).

nxnxdxcxbay ···· 321 +++++= L (1)

To look at a cloud of points in a multivariate space,
one would like a procedure that produces orthogonal
axes, preserves relative distances and reduces the
number of dimensions. Linear principal component
analysis (LPCA) has all these characteristics. A linear
principal component (LPC) is a linear combination of
the original variables and explains most of the variance
with a reduced number of variables. Moreover, they
offer visualising patterns and variable relationships in
easily interpretable graphical plots. The percentage of
the total variance that each LPC collects varies widely,
and typically just a few ones explain the highest part
of the variance observed in the data.
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Cluster analysis (CA) was performed to find the
variable grouping. In this technique groups are defined
directly by the data. Linear discriminant analysis (LDA)
is a technique used to capture associations among several
series of data and develop rules for classifying data into
groups. Grouping criteria are defined a priori, and step-
wise LDA computes which variables are significant to
explain the differentiation. To do that, LDA derives
variables (called discriminant functions) that are
combinations of the original variables, which discriminate
maximally between the groups.

The Neural Networks (NN) technique, a completely
different technique, was used to process the data. The
NN has found solid applications during the last decade
and it is developing rapidly. Based on an idealized model
of the biological neuron, the calculation paradigm of NN
is able to represent information for complex systems. In
the NN model, the input signal (external or from other
units of the network) is given to a unit (neuron) that
processes it and sends an output to other units or to the
network output. In the generic case, all pairs of neurons
are connected, and the network performance is strongly
dependent on the weighting structure. The main benefits
of the NN approach (Bishop 1996, Hagan et al., 2002,
Haykin 1994, Ripley 1996, Thangavel and
Kathirvalavakumar 2002, Yu et al., 2002) consists in its
remarkable ability to learn and generalize patterns and
their robust behavior in the presence of noise. As a
consequence, the NN approach is successfully used for
modeling systems in which detailed governing rules are

unknown or difficult to formalize, but the input-output
set of variables is known (Eyupoglu et al., 2010, Rene
and Saidutta 2008). NN also offer incentives for cases
when input-output data are noisy and when high
processing speed is required (Jalili and Noori 2008).
Calculations were performed using MATLAB® (MatLab
2009) capabilities and the neural networks toolbox.

RESULTS & DISCUSSION
The plant data were retrieved from the on-line

monitoring system (1999-2001) and corresponds to the
daily averages of the Son Reus MWI (line 1). Several
variables from the furnace were measured: flowrate and
temperature of the combustion gases (CGF and CGT);
flowrate and temperature of the primary air (PAF and PAT);
flowrate and temperature of the secondary air injection
(SAF and SAT); gas-oil flowrate (GOF) used in the
auxiliary burners; and the reference oxygen content
(OCR), measured in the furnace effluent. The water
flowrate, temperature and pressure (WF, WT, and WP)
were measured in the boiler. The turbine variables were
also included: the vapor flowrate temperature and pressure
(VF, VT, and VP). In addition, the lower calorific power of
the MSW (CP) was incorporated to check for the
relationship among the variables. According to the advise
of the plant personnel, the ambient temperature (T) was
also considered. Thus a matrix of 17 variables × 907 days
of routinely analyzed parameters was used in this work.
Only a few representative results of the numerous
calculations are presented in this paper (Figs 2 to 5 and
Tables 2 to 5).

 

 
 

Fig. 2. Cluster analysis for the variables considering all data
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Fig. 3. LPCA based on the correlation matrix. (a) LPC-1 vs LPC-2

Fig. 5. PCs score plot in the space defined by: (a) LPC-1 vs LPC-2. CP parameterization: ο = 1.5<CP<1.72  =
1.72<CP<1.77; ∆ = 1.77<CP<1.82; • = 1.82<CP<1.87;  = 1.87<CP<1.95;  = 1.95<CP<2.14; T = group centroid

Fig. 4. LPCA based on the correlation matrix. (b) LPC-3 vs LPC-4
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Table 2. Descriptive statistics of the original data set (907 data)

 Mean* Median Standard 
deviation 

Minimum Maximum 

CGF/Nm3/h 8.23±0.024 8.20 0.37 6.93 9.53 
CGT/ oC 231±0.67 231 10 185 253 
GOF/L/h 8.71±1.2 1.20 18 0.500 188 
CP/ca l/g 1.82±0.0058 1.82 0.090 1.53 2.14 
MSW/ton/h 469±1.3 470 20 379 571 
OCR/% v/v 8.02±0.053 7.90 0.82 5.70 17.2 
PAF/Nm3/h 5.30±0.13 5.31 0.20 4.42 5.86 
PAT/oC 145±0.80 147 12 88.9 180 
SAF/Nm3/h 1.18±0.011 1.19 0.17 0.640 1.63 
SAT/ oC 31.3±0.34 31.2 5.3 14.7 41.8 
T/oC 20.2±0.40 20.1 6.1 6.70 33 
VF/ton/h 45.5±0.13 45.5 2.0 38.5 52.6 
VP/bar 41.6±0.020 41.6 0.31 40.6 42.5 
VT/oC 398±0.28 400 4.2 355 404 
WF/ton/h 47.6±0.13 47.4 2.0 40.6 54.3 
WP/bar 51.8±0.056 51.8 0.87 48.9 54.7 
WT/oC 127±0.15 127 2.3 115 137 

 * Significance level = 95%

Table 3. Results of the LPCA: eigenvalues and variance explained by each LPC

LPC Eigenvalues % of variance 
1 5.28 31.1 
2 2.85 16.7 
3 1.94 11.4 
4 1.32 7.76 
5 1.23 7.26 

 
Table 4. Matrix of the linear principal components

 LPC-1 LPC-2 LPC-3 LPC-4 LPC-5 

WP .979 5.49·10-2 1.66·10-2 5.00·10-2 -7.60·10-2 

WF .936 -7.92·10-2 .108 -5.33·10-2 -7.23·10-2 
VF .930 -.161 .123 -1.32·10-2 -.148 
VP .881 .196 7.54·10-2 8.48·10-2 -9.19·10-2 
WT .740 .457 -.158 .143 3.14·10-2 
T .113 .918 -9.83·10-2 2.13·10-2 -.113 
SAT .108 .904 -.152 -6.00·10-2 -.135 
PAT 4.31·10-2 .537 .238 -.220 6.91·10-6 
PAF .313 .441 .347 -.301 .391 
GOF -.188 .414 .154 6.77·10-2 .181 
CGT -.139 -2.71·10-2 .880 5.34·10-2 -.132 
CGF .388 7.67·10-2 .751 -9.44·10-2 -1.34·10-2 
MSW .303 5.78·10-2 .264 -.823 5.25·10-4 
CP .398 -.371 6.15·10-2 .745 -.155 
VT .159 8.49·10-2 .125 .544 .228 
OCR -.102 -9.90·10-2 -4.95·10-2 5.46·10-2 .818 
SAF .499 -7.78·10-2 .281 -.132 -.645 
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Table 5. LDA showing monthly allocation of individual data. Numbers refer to the month
(1= January; ...; 12= December)

Predicted month Original 
month 1 2 3 4 5 6 7 8 9 10 11 12 

Tota l number 

1 67 16 3 1 1 5 93 
2 25 39 13 3 4 84 
3  8 50 18 2 1 3 5 87 
4   23 46 11 1 5  86 
5   1 9 59 8 5 5  87 
6    1 8 54 18 2 5 2  90 
7    1 3 9 47 17 14  91 
8    10 77 5  92 
9    1 2 4 3 42 5  57 
10   1 2 2 6 34 2  47 
11    1 32 6 39 
12 1 3 3 3 44 54 

% correc t 72 46 57 53 68 60 51 84 77 72 82 81  
 

Error and Detection of Outliers
The classical statistical analyses were investigated

(histograms, confidence analysis) and the general
characteristics of each variable are shown in Table 2.
Typical exponential profiles were detected for variables
adjusted to the legal limit (e. g. GOF, VT) while other
variables behave as normal distributions (e. g. SAF, CP).
Variables such as SAT and T show a peculiar profile that
clearly indicates the presence of outliers. The outliers
detected were not considered to avoid the influence of
operational parameter that are far from the normal operating
conditions. The noise rejection capacity of the neural
networks revealed that a few data are affected by errors of
measurement, due to significant relative errors. Moreover,
we checked with the operational planning and the
documentation of incidences and all these data coincide
with operational upsets or shut-down/start-up periods.

This section was carr ied out to have a
straightforward model with predictive capabilities for
the CP (variable used to characterize the MSW) and as
a tool to compare the behavior of the two incineration
lines installed in the MWI.

Two different models were used, both of them
consider a step-wise inclusion of variables; that is, a
variable is discarded if its contribution is not significant
or alternatively if the variability is represented by a
variable that has already been included within the model.
If all variables are considered (r2=0.934) the variables
are selected in the following order: MSW, VF, CGT, VP,
PAT, GOF, VT, SAF, PAF, SAT, T and WT. If just input
variables to the MWI are considered, the model also
exhibits certain predictive capabilities (r2=0.836). As
expected, the order in which the variables are included
change (MSW, GOF, WT, PAT, SAF, SAT, WP, PAF,
WF and T). The coefficients of the model are shown in

Equation ii, thus emulating a feed-forward control
strategy. The sign of most coefficients could be
predicted a priori (e. g. GOF should be negative), while
for others (e. g. MSW) no justification was found.

TWFPAF
WPSAT

SAFPAT
WTGOF

MSWCP

334

33

33

34

3

10·05.410·20.210·86.4
10·51.110·96.7

10·28.110·96.1
10·23.110·38.4

10·00.353.2

−−−

−−

−−

−−

−

++

++

−+

−−

−−=

(2)

As can be seen (Fig. 2), the variables group each
other in several well-defined clusters (the distance in the
horizontal axis is a measure of group closeness). These
groups are: mass and energy balance in the boiler (WF,
WP, VF, VP, WT, SAF and CP); temperatures (T, SAT,
PAT) and GOF; and stoichiometric aspects of the whole
plant (CGF, PAF, MSW and CGT). VT and OCR seem to
behave independently of any other variable.

The correlation matr ix shows an average
dependence among variables, pointing out that the
set of data is not highly redundant. The Kaise-Meyer-
Olkin (KMO) and Bartlett spherical tests (Everitt and
Dunn 1992) were performed to know if the use of
multivariate techniques is suitable a priori. In this
case, although the results from the first method neither
recommend nor avoid LPCA (KMO=0.647), the second
one exhibits a non-identity correlation matrix, and
thereby LPCA is a promising technique.

From the initial 17 variables, LPCA derives just 5
factors, which makes easier the analysis and interpretation
of results. These factors (Table 3) represent 74.3% of the
information contained in the original data.
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The communality values show how much variance
of a single variable is condensed in all four factors. In this
case VT, PAF and GOF were the worst represented
variables (<40%). The communalities captured by the
LPCs for any other variable ranges from 66% (PAF) to
93% (VF).

To provide an interpretable factor matrix for the
LPCA, the covariance matrix was rotated using the
varimax method (SPSS 2007). The objective was to
achieve a matrix where each factor has a high
correlation with just a few original variables, while all
the other factors should have values close to zero.
Results are shown in Table 4, where a certain grouping
of variables was observed. As expected, a certain
similitude with results from the CA is also found. The
first LPC, explains the greatest part of variation in the
data (31%), and includes almost all variables related
with the boiler except vapor temperature, thus stating
that these are the variables with higher correlation.
High values of the LPC-1 mean that all the variables
have high values, as all the correlation values are
positive. This result has a clear explanation, as it states
that among all the variables considered the ones related
with a classical unit operation (i. e. reboiler) are most
correlated, because the mass and energy balance can
be rigorously performed (i. e. the vapor produced
depends on the water input). The second LPC represents
17% of the total variance and is dominated by T, SAT,
PAT PAF and GOF. This factor includes the energy inputs
to the furnace, and all variables are physically related to
the combustion. It is important to highlight that PAF in
spite of being included in this factor has a considerable
contribution in all LPCs, and therefore is correlated with a
great number of variables. The third LPC covers 11,4% of
the total variance. CGT and CGF rule LPC-3. The great
variability in the MSW masks the relationship
established by the mass and energy balance, and these
two variables seem to behave independently of the
other parameters, as shown by the covariance matrix.
The last two LPCs include each one around 7% of the
total variance. The fourth one contains MSW, CP and
VT while the fifth OCR and SAF. It is not surprising
that no physical meaning was found for these factors,
as subsequent LPCs explain successively smaller
variance of the information contained in the original
variables. The behavior of SAF is very similar to that
of PAF, since the correlation coefficients with LPC-1 is
also high. High values of CP imply low values of MSW,
thus stating a reverse relationship between variables
These results agree with those obtained from the CA
(grouping of variables) and the LMR (relationship
between variables).

Next, the most evident representations are shown.
One of the aspects that was checked was the seasonal

variation of all variables, and its effect on the MWI
operation. Fig. 3 confirms the role of LPC-1 and LPC-2
in the data distribution. This phenomenon was also
confirmed with the parameterized plot of the LPCs. For
example, LPC-2 contains the original variable CP: low
values of LPC-2 (winter) correspond to high values of
CP, while in summertime the opposite behavior is
found, due to the variability in the MSW composition
(higher organic fraction). Fig. 4 also shows the seasonal
variation, probably due to the effect of MSW.

A result that may have more importance is how
the process variables behave depending on the time
of the year the plant is operating and in particular what
is the behavior of some key variables (e. g. CP). The
previous knowledge of the process makes easier the
analysis, as the possibilities are combinatorial (i. e.
OCR and T should not be considered). In this case, a
clear graduation from bottom-right to the top-left part
depending on the CP was detected (Fig. 5). If LPC-3
and LPC-4 are considered, a clear differentiation from
bottom to top is found, probably because CP is
included in these components. (Fig. 6).

The LDA is performed after the LPCA and it has
proven to be a very useful technique to verify the pattern
in which data are grouped. The significance values,
obtained by means of analysis of  variance (ANOVA) are
not very close to zero, expressing a priori that the LDA
model will have a medium-high classification performance.
The result of the LDA is that the model classifies correctly
65.0% of the original data according to the month, and
where WT, GOF and OCR were not considered. Results
are reported in Table 5, where actual and predicted group
membership are shown. Because the months are in effect
a continuum that is artificially separated, we should not
be surprised that a better discrimination is not achieved.
It should be remembered that if allocation were completely
random we would only expect a 8.3% correct allocation.
Due to the characteristics of the Mediterranean climate,
some spring/autumn data are missclasified. Also, the lower
number of data corresponding to October, November and
December is due to plant shut-downs.

According to the classification for the CP divided
into six intervals (see Figs 5 and 6), the model is able to
classify 80.5% of the cases correctly using all variables.
With an step-wise analysis this value is almost the same
(79.7%), just considering 9 variables (VF, VT, VP, WF,
CGT, PAT, SAT, GOF, MSW) thus indicating that turbine
and furnace variables dominate the analysis. If just the
input variables are considered, the classification
performance drops to 60.5% where all variables are
considered (WF, WP, WT, PAF, PAT, T, SAF, SAT, GOF,
MSW). The order in which the variables are introduced
into the model also adds some information (e. g. GOF was
among the last variables, as it is used when MSW have a
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Fig. 6. PCs score plot in the space defined by: (b) LPC-3 vc LPC-4. CP parameterization: ο  = 1.5<CP<1.72 =
1.72<CP<1.77; ∆ = 1.77<CP<1.82; • = 1.82<CP<1.87;  = 1.87<CP<1.95;    = 1.95<CP<2.14; T = group centroid

Table 5. LDA showing monthly allocation of individual data. Numbers refer to the month
(1= January; ...; 12= December)

Predicted month Original 
month 1 2 3 4 5 6 7 8 9 10 11 12 

Total number 

1 67 16 3 1       1 5 93 
2 25 39 13 3        4 84 
3  8 50 18 2    1 3  5 87 
4   23 46 11 1    5   86 
5   1 9 59 8   5 5   87 
6    1 8 54 18 2 5 2   90 
7    1 3 9 47 17 14    91 
8       10 77 5    92 
9     1 2 4 3 42 5   57 
10   1 2 2    6 34 2  47 
11          1 32 6 39 
12 1 3 3        3 44 54 

% cor rect 72 46 57 53 68 60 51 84 77 72 82 81 
 

very high humidity or for plant start-up and shut-down).
In all the analysis performed, the model prediction is better
for the extreme intervals (≈70-80%) than for intermediate
intervals of CP (≈15-20%).

The NN approach has been used to investigate
the prediction ability to infer the CP from the data set.
The original data was divided into two subsets: 90%
of the data were used to train the network and the rest

were used to test the ability of the model. A multilayer
feed-forward NN architecture with the backpropagation
training algorithm was used to compute the network
biases and weights (Hagan et al., 2002). Two layers of
neurons were considered (20 neurons in the input layer
and one neuron in the output layer), with the tan-
sigmoid transfer function for the hidden layer and the
purelin transfer function for the output layer. The

Lp
c-

4 (
8%

)

Lpc-3 (11%)

Lp
c-

4 
(8

%
)
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quasi-Newton Levenberg-Marquardt algorithm was
used to train the NN and the early stopping method
(based on the gradient of the mean square error) was
applied to prevent any overfitting.

The first study was carried out considering the
entire set of the variables as inputs to the NN and the
CP as output variable (case I). The results illustrate a
very good prediction characteristic of the NN
prefigured by the straightforward learning aptitude
(r2=0.995 for the training set of data). At the same time,
the generalization capability of the trained NN,
performed on the test set of data, proved to be very
good. (r2=0.975).

As a result of the multivariate analysis, an
additional exploration of the data was performed just

considering the input variables (MSW, GOF, WT, PAT,
SAF, SAT, PAF, WF, WP and T). In order to test the
robustness of the NN, two different approaches had
been considered. The first approach was to select
homogeneously distributed test data (case II), while
the second was to use test data corresponding to the
last time period of the set (case III). In both cases, the
NN exhibits a good fit between the original and the NN
output data for the training subset (r2 > 0.995). The
same favorable fit was also preserved for the test data
set demonstrating a good generalization property of
the NN. Results for case II and case III are shown in
Figs 7 and 8, respectively. In both cases, relative errors
lower than 6% and 8% are found.

Fig. 8. NN prediction ability for the CP. (b) Case III

Fig. 7. NN prediction ability for the CP. (a) Case II
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CONCLUSION
Multivariate methods provide a large arsenal of

suitable techniques, whose potential has not yet been
exploited to the full. The above example demonstrates
that multivariate techniques can provide a deeper insight
into the internal structure of the data and help to reach
conclusions that are not immediately obvious.

Both the LMR and the NN models predict the CP
from the MWI input variables with an acceptable relative
error. This capability is a potential source of improvement
for monitoring and operating the MWI and was found to
be very useful for comparing both incinerator lines. Also,
the use of LPCA allows a reduction of the number of
variables from 17 to 5 maintaining 75% of the variance
contained in the original data. The LDA model exhibits
very good predictive capabilities (65% for the month and
80% for CP). The NN approach may be extended to
dynamic data and it may help to detect upsets in feed
properties and perform efficient real time control.

NOMENCLATURE
ANOVA Analysis of variance
CA cluster analysis
CGF flowrate of the combustion gases/
Nm3·h-1

CGT temperature of the combustion gases/
oC
CP calorific power of the MSW/cal·g-1

GOF gas-oil flowrate/L·h-1

KMO Kaise-Meyer-Olkin
LDA linear discriminant analysis
LMR linear multivariate regression
LPC linear principal component
LPCA linear principal component analysis
MSW municipal solid waste/ton·h-1

MWI municipal waste incinerator
NN neural networks
OCR reference oxygen content/% v/v
PAF flowrate of the primary air/Nm3·h-1

PAT temperature of the primary air/oC
SAF flowrate of the secondary air/Nm3·h-1

SAT temperature of the secondary air/oC
T ambient temperature/oC
VF vapor flowrate/ton·h-1

VP vapor pressure/bar
VT vapor temperature/oC
WF water flowrate/ton·h-1

WP water pressure/bar
WT water temperature/oC
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