ESTIMATIONS OF COMPOSITE MATERIALS PROPERTIES

Composite materials may be either **isotropic** or **anisotropic**, which is determined by the Structure of composites.

Isotropic material is a material, properties of which do not depend on a direction of measuring.

Anisotropic material is a material, properties of which along a particular axis or parallel to a particular plane are different from the properties measured along other directions.

Rule of Mixtures

Rule of Mixtures is a method of approach to approximate estimation of composite material properties, based on an assumption that a composite property is the volume weighed average of the phases (matrix and dispersed phase) properties.

According to Rule of Mixtures properties of composite materials are estimated as follows:

- Density
- Coefficient of Thermal Expansion
- Modulus of Elasticity
- Shear modulus
- Poisson's ratio
- Tensile strength

Density

 $\mathbf{d}_{c} = \mathbf{d}_{m}^{*}\mathbf{V}_{m} + \mathbf{d}_{f}^{*}\mathbf{V}_{f}$ Where

 $\label{eq:d_c_d_m} d_f - \text{densities of the composite, matrix and dispersed phase respectively;} \\ V_m, V_f - \text{volume fraction of the matrix and dispersed phase respectively.}$

Coefficient of Thermal Expansion

□ Coefficient of Thermal Expansion (CTE) in longitudinal direction (along the fibers) $\alpha_{cl} = (\alpha_m^* E_m^* V_m + \alpha_f^* E_f^* V_f)/(m^* V_m + E_f^* V_f)$ Where

 α_{cl} , α_m , $\alpha_f - CTE$ of composite in longitudinal direction, matrix and dispersed phase (fiber) respectively; E_m , E_f – modulus of elasticity of matrix and dispersed phase (fiber) respectively. Coefficient of Thermal Expansion (CTE) in transverse direction (perpendicular to the fibers)

$$\label{eq:act} \begin{split} \alpha_{ct} = (1{+}\mu_m) \; \alpha_m \; {}^*V_m + \alpha_f {}^* \; V_f \\ \text{Where} \end{split}$$

 μ_m – Poisson's ratio of matrix.

Poisson's ratio is the ratio of transverse contraction strain to longitudinal extension strain in the direction of applied force.

Modulus of Elasticity

Long align fibers

Modulus of Elasticity in longitudinal direction (E_{cl})
E_{cl} = E_m*V_m + E_f*V_f
Modulus of Elasticity in transverse direction (E_{ct})
1/E_{ct} = V_m/E_m + V_f/E_f
Short fibers

 $E_{cl} = \eta_0 \eta_L V_f E_f + V_m E_m$

 $η_L = 1 - 2/βL*tanh(βL /2)$ $β = [8 G_m/(E_fD^2ln(2R/D))]^{1/2}$

where:

- \mathbf{E}_{f} modulus of elasticity of fiber material;
- **E**_m modulus of elasticity of matrix material;
- **G**_m shear modulus of matrix material;
- η_L length correction factor;
- L fibers length;
- D fibers diameter;
- 2R distance between fibers;
- η_0 fiber orientation distribution factor.
- $\eta_0 = 0.0$ align fibers in transverse direction
- $\eta_0 = 1/5$ random orientation in any direction (3D)
- $\eta_0 = 3/8$ random orientation in plane (2D)
- $\eta_0 = 1/2$ biaxial parallel to the fibers
- $\eta_0 = 1.0$ unidirectional parallel to the fibers

Shear modulus $G_{ct} = G_f G_m / (V_f G_m + V_m G_f)$

Where:

 ${f G}_f$ – shear modulus of elasticity of fiber material; ${f G}_m$ – shear modulus of elasticity of matrix material;

Poisson's ratio $\mu_{12} = v_f \mu_f + V_m \mu_m$

Where:

 μ_f – Poisson's ratio of fiber material; μ_m – Poisson's ratio of matrix material;

Tensile Strength

□ Tensile strength of long-fiber reinforced composite in longitudinal direction $\sigma_c = \sigma_m^* V_m + \sigma_f^* V_f$ Where

σ_c, σ_m, σ_f – tensile strength of the composite, matrix and dispersed phase (fiber) respectively.
Tensile strength of short-fiber composite in longitudinal direction (fiber length is less than critical value L_c)

 $L_c = \sigma_f d/\tau_c$ Where

d – diameter of the fiber; τ_c –shear strength of the bond between the matrix and dispersed phase (fiber). $\sigma_c = \sigma_m^* V_m + \sigma_f^* V_f^* (1 - L_c/2L)$ Where

L - length of the fiber

□ Tensile strength of short-fiber composite in longitudinal direction (fiber length is greater than critical value L_c) $\sigma_c = \sigma_m * V_m + L * \tau_c * V_f / d$

Source : http://www.substech.com/dokuwiki/doku.php? id=estimations_of_composite_materials_properties