PRACTICAL FUNDAMENTALS OF HEATING, VENTILATION AND AIRCONDITIONING (HVAC) FOR ENGINEERS AND TECHNICIANS

YOU WILL LEARN HOW TO:

- Maintain and troubleshoot HVAC systems
- Understand and apply the psychrometic chart
- Design for good air quality
- Perform basic load calculations
- Initiate an effective inspection and maintenance program
- Minimise forced outages and prevent serious damage to HVAC equipment
- Provide an overview of the legislative requirements plus the essential steps and responsibilities for the maintenance and repair of HVAC systems
- Outline the technologies available for the efficient energy management using HVAC systems

WHO SHOULD ATTEND:

- Maintenance engineers, technicians and staff
- Plant engineers
- Operation, maintenance, inspection and repair managers, supervisors and engineers
- Mechanical engineers and technicians
- Design engineers
- Electrical engineers and technicians
- Consulting engineers

Technology Training that Works

The Workshop

This workshop is designed for engineers and technicians from a wide range of abilities and backgrounds and will provide an excellent introduction to the fundamentals of heating, ventilation and air-conditioning. It commences with a review of psychrometric charts and then examines the factors that influence design choices, indoor air quality, load calculations and heating/ventilation and air-conditioning systems. Numerous tips and tricks throughout the course make it very practical and topical to your applications.

Pre-requisites

Fundamental knowledge of basic mechanical plant and operation thereof.

The Program

DAY ONE

INTRODUCTION TO HVAC

- General
- · Principles of thermodynamics
- Laws of thermodynamics
- Fundamentals of heat transfer
- Fundamentals of fluid flow
- Temperature and its measurement
- Pressure and temperature relationship

PSYCHROMETRY

- Introduction to psychrometry
- The properties of air
- Psychrometric charts
- Air conditioning and psychrometric systems
- Psychrometric charts as a tool for analysis for a/c performance

REQUIREMENTS OF COMFORT AIR CONDITIONING

- Thermodynamics of the human body
- Air purification methods
- Role of clothing
- Temperature and humidity in high heat load
- Inside and outdoor design criteria
- Ventilation and ventilation standards
- Design of ventilation systems
- Air distribution systems
- Air diffusion and performance
- · Air purification methods

HEATING AND COOLING LOAD CALCULATION PROCEDURE

- Design considerations
- Load components
- Design criteria indoor and outdoor
- Heat/load components
- Miscellaneous heat sources
- Fresh air loads
- Design of air-conditioning systems
- Heat gains: transmission, solar, infiltration

HVAC SYSTEMS

- All air, all water, air water systems
- Heat systems
- Steam heating systems
- Electric heat systems
- Components of the air conditioning systems in practice

CONSTANT VOLUME SYSTEMS

- System concepts
- Different configurations

VARIABLE AIR VOLUME SYSTEMS

- System concepts
- Different Variable Air Volume (VAV) systems

DAY TWO

DUCT DESIGN, AIRFLOW AND ITS DISTRIBUTION

- Pressure gradient diagrams
- Duct sizing and design

INSULATION OF AIR-CONDITIONING SYSTEMS

- Properties of insulating materials
- Froperties of insulating materials
 Factors affecting thermal conductivity
- Factors affecting thermal conductivity
 Heat transfer through insulation
- Economical thickness of insulation
- Insulated systems
- Importance of relative humidity for the selection of insulation

AIR-CONDITIONING EQUIPMENT

- Packaged units
- Split systems
- Chillers
- Boilers
- Pumps
- Cooling towers
- Adiabatic coolers
- Capacity assessment and selection
- Air filters
- Humidifiers
- Dehumidifiers
- Fans and blowers
- · Grills and registers

REFRIGERATION

- Methods of refrigeration
- Air refrigeration systems
- Vapor compression and absorption refrigeration systems
- Refrigerants
- Refrigeration equipment

CONTROLS AND INSTRUMENTATION

- Definitions
- Sensors and elements
- Pneumatic and hydraulic controls
- Electrical and electronic controls
- Two position control
- PID control
- Parameters to be controlled (temperature supply and return air)

TYPICAL CONTROL SYSTEMS

- Preheat and humidification control (winter air-conditioning)
- Cooling, dehumidification and reheat control (summer air-conditioning)
- Face and by-pass control
- All year round air-conditioning system

idc@idc-online.com • www.idc-online.com

Zone control system

DAY TWO CONT.

· Duct work and air outlets

Electrical and controls

· Other service operations

Operational activities

FAULT FINDING AND

Equipment failure

TROUBLESHOOTING FAULTS

Poor design and installation

TROUBLESHOOTING TOOLS

DOE (Design Of Experiments)

Cause and effect diagrams

FUTURE REFRIGERANTS

ENERGY MANAGEMENT

Typical rate schedules

Energy performance

Effects on total fuel bill

GREEN HOUSE EFFECT AND

ENERGY CONSERVATION AND

Contracts and incentive programs

SUMMARY, OPEN FORUM

(ELECTRICAL AND MECHANICAL)

Limitations in operation

Troubleshooting tools

FTA (Fault Tree Analysis)

Applications

Costs of fuels

Cost-in-use

AND CLOSING

Smart buildings

Improper adjustments and settings

Practical Sessions

This is a practical, hands on workshop

enabling you to work through practical

exercises which reinforce the concepts

To gain full value from this workshop,

please bring your laptop/notebook computer.

INSTALLATION, COMMISSIONING OPERATION, TESTING AND MAINTENANCE

· Insulation and commissioning process

HVAC equipment

Economics

Do's and don'ts

discussed.