Preamble

Engineering science is usually subdivided into number of topics such as

1. Solid Mechanics
2. Fluid Mechanics
3. Heat Transfer
4. Properties of materials and soon

Although there are close links between them in terms of the physical principles involved and methods of analysis employed.

The solid mechanics as a subject may be defined as a branch of applied mechanics that deals with behaviours of solid bodies subjected to various types of loadings. This is usually subdivided into further two streams i.e Mechanics of rigid bodies or simply Mechanics and Mechanics of deformable solids.

The mechanics of deformable solids which is branch of applied mechanics is known by several names i.e. strength of materials, mechanics of materials etc.

Mechanics of rigid bodies:

The mechanics of rigid bodies is primarily concerned with the static and dynamic behaviour under external forces of engineering components and systems which are treated as infinitely strong and undeformable. Primarily we deal here with the forces and motions associated with particles and rigid bodies.

Mechanics of deformable solids:

The mechanics of deformable solids is more concerned with the internal forces and associated changes in the geometry of the components involved. Of particular importance are the properties of the materials used, the strength of which will determine whether the components fail by breaking in service, and the stiffness of which will determine whether the amount of deformation they suffer is acceptable. Therefore, the subject of mechanics of materials or strength of materials is central to the whole activity of engineering design. Usually the objectives in analysis here will be the determination of the stresses, strains, and deflections produced by loads. Theoretical analyses and experimental results have an equal roles in this field.

Analysis of stress and strain:

Concept of stress: Let us introduce the concept of stress as we know that the main problem of engineering mechanics of material is the investigation of the internal resistance of the body, i.e. the nature of forces set up within a body to balance the effect of the externally applied forces.

The externally applied forces are termed as loads. These externally applied forces may be due to any one of the reason.

(i) due to service conditions
(ii) due to environment in which the component works
(iii) through contact with other members
(iv) due to fluid pressures

(v) due to gravity or inertia forces.

As we know that in mechanics of deformable solids, externally applied forces acts on a body and body suffers a deformation. From equilibrium point of view, this action should be opposed or reacted by internal forces which are set up within the particles of material due to cohesion.

These internal forces give rise to a concept of stress. Therefore, let us define a stress Therefore, let us define a term stress

Stress:

Let us consider a rectangular bar of some cross-sectional area and subjected to some load or force (in Newtons)

Let us imagine that the same rectangular bar is assumed to be cut into two halves at section XX. The each portion of this rectangular bar is in equilibrium under the action of load P and the internal forces acting at the section XX has been shown

Now stress is defined as the force intensity or force per unit area. Here we use a symbol σ to represent the stress.

$$\sigma = \frac{P}{A}$$

Where A is the area of the X-section
Here we are using an assumption that the total force or total load carried by the rectangular bar is uniformly distributed over its cross-section.

But the stress distributions may be far from uniform, with local regions of high stress known as stress concentrations.

If the force carried by a component is not uniformly distributed over its cross-sectional area, \(A \), we must consider a small area, \(\delta A \) which carries a small load \(\delta P \), of the total force ‘P’. Then definition of stress is

\[
\sigma = \frac{\delta F}{\delta A}
\]

As a particular stress generally holds true only at a point, therefore it is defined mathematically as

\[
\sigma = \lim_{\delta A \to 0} \frac{\delta F}{\delta A}
\]

Units:

The basic units of stress in S.I units i.e. (International system) are \(N / m^2 \) (or Pa)

- \(\text{MPa} = 10^6 \ \text{Pa} \)
- \(\text{GPa} = 10^9 \ \text{Pa} \)
- \(\text{KPa} = 10^3 \ \text{Pa} \)

Sometimes \(N / \text{mm}^2 \) units are also used, because this is an equivalent to MPa. While US customary unit is pound per square inch psi.

TYPES OF STRESSES:

only two basic stresses exist: (1) normal stress and (2) shear shear stress. Other stresses either are similar to these basic stresses or are a combination of these e.g. bending stress is a combination tensile, compressive and shear stresses. Torsional stress, as encountered in twisting of a shaft is a shearing stress.

Let us define the normal stresses and shear stresses in the following sections.

Normal stresses: We have defined stress as force per unit area. If the stresses are normal to the areas concerned, then these are termed as normal stresses. The normal stresses are generally denoted by a Greek letter (\(\sigma \))
This is also known as uniaxial state of stress, because the stresses acts only in one direction however, such a state rarely exists, therefore we have biaxial and triaxial state of stresses where either the two mutually perpendicular normal stresses acts or three mutually perpendicular normal stresses acts as shown in the figures below:

Tensile or compressive stresses:

The normal stresses can be either tensile or compressive whether the stresses acts out of the area or into the area.

Bearing Stress: When one object presses against another, it is referred to a bearing stress (They are in fact the compressive stresses).
Shear stresses:

Let us consider now the situation, where the cross-sectional area of a block of material is subject to a distribution of forces which are parallel, rather than normal, to the area concerned. Such forces are associated with a shearing of the material, and are referred to as shear forces. The resulting force intensities are known as shear stresses.

The resulting force intensities are known as shear stresses, the mean shear stress being equal to

\[\tau = \frac{P}{A} \]

Where \(P \) is the total force and \(A \) the area over which it acts.

As we know that the particular stress generally holds good only at a point therefore we can define shear stress at a point as

\[\tau = \lim_{\delta A \to 0} \frac{\delta F}{\delta A} \]

The greek symbol \(\tau \) (tau) (suggesting tangential) is used to denote shear stress.

However, it must be borne in mind that the stress (resultant stress) at any point in a body is basically resolved into two components \(\sigma \) and \(\tau \) one acts perpendicular and other parallel to the area concerned, as it is clearly defined in the following figure.
The single shear takes place on the single plane and the shear area is the cross-sectional of the rivet, whereas the double shear takes place in the case of Butt joints of rivets and the shear area is the twice of the X-sectional area of the rivet.

Source: http://nptel.ac.in/courses/Webcourse-contents/IIT-ROORKEE/strength%20of%20materials/homepage.htm