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                                             Strain 
 
If an object is placed on a table and then the table is moved, each material particle moves 
in space.  The particles undergo a displacement.  The particles have moved in space as a 
rigid body.  The material remains unstressed.  On the other hand, when a material is acted 
upon by a set of forces, it changes size and/or shape, it deforms.  This deformation is 
described using the concept of strain.  The study of motion, without reference to the 
forces which cause such motion, is called kinematics. 
 
 
4.1.1 One Dimensional Strain 
 
The Engineering Strain 
 
Consider a slender rod, fixed at one end and stretched, as illustrated in Fig. 4.1.1; the 
original position of the rod is shown dotted. 
 

 
 
Figure 4.1.1: the strain at a point A in a stretched slender rod; AB is a line element in 

the unstretched rod, A B   is the same line element in the stretched rod 
 
There are a number of different ways in which this stretching/deformation can be 
described.  Here, what is perhaps the simplest measure, the engineering strain, will be 
used.  To determine the strain at point A, Fig. 4.1.1, consider a small line element AB 
emanating from A in the unstretched rod.  The points A and B move to A  and B  when 
the rod has been stretched. The (engineering) strain   at A is then1  
 

( )A A B AB

AB


  
                                        (4.1.1) 

 
The strain at other points in the rod can be evaluated in the same way. 
 
If a line element is stretched to twice its original length, the strain is 1.  If it is unstretched, 
the strain is 0.  If it is shortened to half its original length, the strain is 0.5 .  The strain is 
often expressed as a percentage; a 100% strain is a strain of 1, a 200% strain is a strain of 
2, etc.  Most engineering materials, such as metals and concrete, undergo very small 
strains in practical applications, in the range 610  to 210 ; rubbery materials can easily 
undergo large strains of 100%. 
 
Consider now two adjacent line elements AE and EB (not necessarily of equal length), 
which move to A E   and E B  , Fig. 4.1.2.  If the rod is stretching uniformly, that is, if all 
                                                 
1 this is the strain at point A. The strain at B is evidently the same – one can consider the line element AB to 
emanate fom point B (it does not matter whether the line element emanates out from the point to the “left” 
or to the “right”) 

fixed A B A B
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line elements are stretching in the same proportion along the length of the rod, then 
/ /A E AE E B EB    , and ( ) ( )A E  ; the strain is the same at all points along the rod. 

 

 
 

Figure 4.1.2: the strain at a point A and the strain at point E in a stretched rod 
 
In this case, one could equally choose the line element AB or the element AE in the 
calculation of the strain at A, since 
 

( )A A B AB A E AE

AB AE


    
   

 
In other words it does not matter what the length of the line element chosen for the 
calculation of the strain at A is.  In fact, if the length of the rod before stretching is 0L  and 

after stretching it is L , Fig. 4.1.3, the strain everywhere is (this is equivalent to choosing 
a “line element” extending the full length of the rod) 

 

 0

0

L L

L
 
                                        (4.1.2) 

 

 
 

Figure 4.1.3: a stretched slender rod 
 
On the other hand, when the strain is not uniform, for example / /A E AE E B EB    , 

then the length of the line element does matter.  In this case, to be precise, the line 
element AB in the definition of strain in Eqn. 4.1.1 should be “infinitely small”; the 
smaller the line element, the more accurate will be the evaluation of the strain.  The 
strains considered in this book will be mainly uniform; non-uniform strain will be dealt 
with in detail in Book II. 
 
Displacement, Strain and Rigid Body Motions 
 
To highlight the difference between displacement and strain, and their relationship, 
consider again the stretched rod of Fig 4.1.1.  Fig 4.1.4 shows the same rod: the two 
points A and B undergo displacements ( ) ( ),A Bu AA u BB   .  The strain at A, Eqn 

4.1.1, can be re-expressed in terms of these displacements: 

fixed A B A B 
E E

L

fixed 

0L
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( ) ( )

( )
B A

A u u

AB
 

                                        (4.1.3) 

 
In words, the strain is a measure of the change in displacement as one moves along the 
rod. 

 
 

Figure 4.1.4: displacements in a stretched rod 
 
Consider a line element emanating from the left-hand fixed end of the rod. The 
displacement at the fixed end is zero. However, the strain at the fixed end is not zero, 
since the line element there will change in length.  This is a case where the displacement 
is zero but the strain is not zero. 
 
Consider next the case where the rod is not fixed and simply moves/translates in space, 
without any stretching, Fig. 4.1.5.  This is a case where the displacements are all non-zero 
(and in this case everywhere the same) but the strain is everywhere zero.  This is in fact a 
feature of a good measure of strain: it should be zero for any rigid body motion; the strain 
should only measure the deformation. 
 

 
 

Figure 4.1.5: a rigid body translation of a rod 
 
Note that if one knows the strain at all points in the rod, one cannot be sure of the rod’s 
exact position in space – again, this is because strain does not include information about 
possible rigid body motion.  To know the precise position of the rod, one must also have 
some information about the displacements. 
 
The True Strain 
 
As mentioned, there are many ways in which deformation can be measured.  Many 
different strains measures are in use apart from the engineering strain, for example the 
Green-Lagrange strain and the Euler-Almansi strain: referring again to Fig. 4.1.1, these 
are 
 

Green-Lagrange 
2 2

( )
2

2
A A B AB

AB


  
 ,      Euler-Alamnsi 

2 2

( )
2

2
A A B AB

A B


  


 
       (4.1.4) 

 

original position new position 

fixed A B A B

( )Au ( )Bu
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Many of these strain measures are used in more advanced theories of material behaviour, 
particularly when the deformations are very large. Apart from the engineering strain, just 
one other measure will be discussed in any detail here: the true strain (or logarithmic 
strain), since it is often used in describing material testing (see Chapter 5). 
 
The true strain may be defined as follows: define a small increment in strain to be the 
change in length divided by the current length: /td dL L  .  As the rod of Fig. 4.11 

stretches (uniformly), this current length continually changes, and the total strain thus 
defined is the accumulation of these increments: 
 

0 0

ln
L

t

L

dL L

L L


 
   

 
 .                 (4.1.5) 

 
If a line element is stretched to twice its original length, the (true) strain is 0.69.  If it is 
unstretched, the strain is 0.  If it is shortened to half its original length, the strain is 0.69 .  
The fact that a stretching and a contraction of the material by the same factor results in 
strains which differ only in sign is one of the reasons for the usefulness of the true strain 
measure. 
 
Another reason for its usefulness is the fact that the true strain is additive.  For example, if 
a line element stretches in two steps from lengths 1L  to 2L  to 3L , the total true strain is 

 

3 2 3

2 1 1

ln ln lnt

L L L

L L L


     
       

     
, 

 
which is the same as if the stretching had occurred in one step.  This is not true of the 
engineering strain. 
 
The true strain and engineering strain are related through (see Eqn. 4.1.2, 4.1.5) 

 
    1lnt               (4.1.6) 

 
One important consequence of this relationship is that the smaller the deformation, the 
less the difference between the two strains.  This can be seen in Table 4.1 below, which 
shows the values of the engineering and true strains for a line element of initial length 
1mm, at different stretched lengths.  (In fact, using a Taylor series expansion, 

  2 31 1
2 3ln 1t          , for small   .)  Almost all strain measures in use are 

similar in this way: they are defined such that they are more or less equal when the 
deformation is small.  Put another way, when the deformations are small, it does not 
really matter which strain measure is used, since they are all essentially the same – in that 
case it is sensible to use the simplest measure. 
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0L (mm) L  (mm) 
t  

1 2 1 0.693 
1 1.5 0.5 0.405 
1 1.4 0.4 0.336 
1 1.3 0.3 0.262 
1 1.2 0.2 0.182 
1 1.1 0.1 0.095 
1 1.01 0.01 0.00995 
1 1.001 0.001 0.000995 

Table 4.1: true strain and engineering strain at different stretches 
 
 
It should be emphasised that one strain measure, e.g. engineering or true, is not more 
“correct” or better than the other; the usefulness of a strain measure will depend on the 
application. 
 
 
4.1.2 Two Dimensional Strain 
 
The two dimensional case is similar to the one dimensional case, in that material 
deformation can be described by imagining the material to be a collection of small line 
elements.  As the material is deformed, the line elements stretch, or get shorter, only now 
they can also rotate in space relative to each other.  This movement of line elements is 
encompassed in the idea of strain: the “strain at a point” is all the stretching, contracting 
and rotating of all line elements emanating from that point, with all the line elements 
together making up the continuous material, as illustrated in Fig. 4.1.6. 
 

 
Figure 4.1.6: a deforming material element;  original state of line elements and their 

final position after straining 
 
It turns out that the strain at a point is completely characterised by the movement of any 
two mutually perpendicular line-segments.  If it is known how these perpendicular line-
segments are stretching, contracting and rotating, it will be possible to determine how any 
other line element at the point is behaving, by using a strain transformation rule (see 
later).  This is analogous to the way the stress at a point is characterised by the stress 
acting on perpendicular planes through a point, and the stress components on other planes 
can be obtained using the stress transformation formulae. 
 

before deformation after deformation 
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So, for the two-dimensional case, consider two perpendicular line-elements emanating 
from a point.  When the material that contains the point is deformed, two things (can) 
happen: 

(1) the line segments will change length and 
(2) the angle between the line-segments changes. 

 
The change in length of line-elements is called normal strain and the change in angle 
between initially perpendicular line-segments is called shear strain. 
 
As mentioned earlier, a number of different definitions of strain are in use; here, the 
following, most commonly used, definition will be employed, which will be called the 
exact strain: 
 

Normal strain in direction x : (denoted by xx ) 

change in length (per unit length) of a line element originally lying in the x direction 
 

Normal strain in direction y : (denoted by yy ) 

change in length (per unit length) of a line element originally lying in the y direction 
 

Shear strain: (denoted by xy ) 

(half) the change in the original right angle between the two perpendicular line 
elements 

 
Referring to Fig. 4.1.7, the (exact) strains are 
 

 1
, ,

2xx yy xy

A B AB A C AC

AB AC
    

    
    .    (4.1.7) 

 

 
 

Figure 4.1.7: strain at a point A 
 
These 2D strains can be represented in the matrix form 
 

  xx xy

yx yy

 


 
 

  
 

                                                 (4.1.8) 

 
As with the stress, the strain matrix is symmetric, with, by definition, yzxy   . 

C 

A B

A

B




x

y

C
deforms 
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Note that the point A in Fig. 4.1.7 has also undergone a displacement u(A).  This 
displacement has two components, xu  and yu , as shown in Fig. 4.1.8 (and similarly for 

the points B and C).  
 

 
 

Figure 4.1.8: displacement of a point A 
 
The line elements not only change length and the angle between them changes – they can 
also move in space as rigid-bodies.  Thus, for example, the normal and shear strain in the 
three examples shown in Fig. 4.1.9 are the same, even though the displacements occurring 
in each case are different – strain is independent of rigid body motions. 
 

 
 

Figure 4.1.9: rigid body motions 
 
 
The Engineering Strain 
 
Suppose now that the deformation is very small, so that, in Fig. 4.1.10, *BABA   – 
here *BA  is the projection of BA   in the x   direction.  In that case,  
 

AB

ABBA
xx




*

 .         (4.1.9) 

 
Similarly, one can make the approximations 
 

* * *1
,

2yy xy

A C AC B B C C

AC AB AC
 

   
   

 
 ,    (4.1.10) 

 
the expression for shear strain following from the fact that, for a small angle, the angle 
(measured in radians) is approximately equal to the tan of the angle. 
 
 

)(Au

xu

yu

A

A

B



Section 4.1 

Solid Mechanics Part I                                                                                Kelly 94

 
 

Figure 4.1.10: small deformation 
 
This approximation for the normal strains is called the engineering strain or small strain 
or infinitesimal strain and is valid when the deformations are small.  The advantage of 
the small strain approximation is that the mathematics is simplified greatly. 
 
Example 
 
Two perpendicular lines are etched onto the fuselage of an aircraft.  During testing in a 
wind tunnel, the perpendicular lines deform as in Fig. 4.1.10.  The coordinates of the line 
end-points (referring to Fig. 4.1.10) are: 
 

: (0.0000,1.0000) : (0.0025,1.0030)

: (0.0000,0.0000) : (0.0000,0.0000)

: (1.0000,0.0000) : (1.0045,0.0020)

C C

A A

B B





 

 
The exact strains are, from Eqn. 4.1.9, (to 8 decimal places)  
 

2 2* *

2 2* *

* *

* *

1 0.00450199

1 0.00300312

1
arctan arctan 0.00224178

2

xx

yy

xy

A B B B

AB

A C C C

AC

B B C C

A B A C







 
  

 
  

     
      

         

 

 
The engineering strains are, from Eqns. 4.1.10-11, 
 

* * * *
1

1 0.0045, 1 0.003, 0.00225
2xx yy xy

A B A C B B C C

AB AC AB AC
  

    
         

 
 

 

 
As can be seen, for the small deformations which occurred, the errors in making the 
small-strain approximation are extremely small, less than 0.11% for all three strains. 

■ 

C 

A B

A

B




x

y

C

deforms 

*B

*C
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Small strain is useful in characterising the small deformations that take place in, for 
example, (1) engineering materials such as concrete, metals, stiff plastics and so on, (2) 
linear viscoelastic materials such as many polymeric materials (see Chapter 9), (3) some 
porous media such as soils and clays at moderate loads, (4) almost any material if the 
loading is not too high. 
 
Small strain is inadequate for describing large deformations that occur, for example, in 
many rubbery materials, soft tissues, engineering materials at large loads, etc.  In these 
cases the more precise definition 4.1.7 (or a variant of it), as developed and used in Book 
III, is required.  That said, the engineering strain and the concepts associated with it are an 
excellent introduction to the more involved large deformation strain measures. 
 
In one dimension, there is no distinction between the exact strain and the engineering 
strain – they are the same.  Differences arise between the two in the two-dimensional case 
when the material shears (as in the example above), or rotates as a rigid body (as will be 
discussed further below).  
 
Engineering Shear Strain and Tensorial Shear Strain 
 
The definition of shear strain introduced above is the tensorial shear strain xy .  The 

engineering shear strain2 xy  is defined as twice this angle, i.e. as   , and is often 

used in Strength of Materials and elementary Solid Mechanics analyses. 
 
 
4.1.3 Sign Convention for Strain 
 
A positive normal strain means that the line element is lengthening.  A negative normal 
strain means the line element is shortening. 
 
For shear strain, one has the following convention: when the two perpendicular line 
elements are both directed in the positive directions (say x  and y ), or both directed in the 
negative directions, then a positive shear strain corresponds to a decrease in right angle.  
Conversely, if one line segment is directed in a positive direction whilst the other is 
directed in a negative direction, then a positive shear strain corresponds to an increase in 
angle.  The four possible cases of shear strain are shown in Fig. 4.1.11a (all four shear 
strains are positive).  A box undergoing a positive shear and a negative shear are also 
shown, in Figs. 4.1.11b,c. 
 

                                                 
2 not to be confused with the term engineering strain, i.e. small strain, used throughout this Chapter 
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Figure 4.1.11: sign convention for shear strain; (a) line elements undergoing positive 

shear, (b) a box undergoing positive shear, (c) a box undergoing negative shear 
 

 
4.1.4 Geometrical Interpretation of the Engineering Strain 
 
Consider a small “box” element and suppose it to be so small that the strain is 
constant/uniform throughout - one says that the strain is homogeneous.  This implies that 
straight lines remain straight after straining and parallel lines remain parallel.  A few 
simple deformations are examined below and these are related to the strains. 
 
A positive normal strain 0xx  is shown in Fig. 4.1.12a.  Here the undeformed box 

element (dashed) has elongated.  Knowledge of the strain alone is not enough to 
determine the position of the strained element, since it is free to move in space as a rigid 
body.  The displacement over some part of the box is usually specified, for example the 
left hand end has been fixed in Fig. 4.1.12b.  A negative normal strain acts in Fig. 4.1.12c 
and the element has contracted. 
 

 
 

Figure 4.1.12: normal strain; (a) positive normal strain, (b) positive normal strain 
with the left-hand end fixed in space, (c) negative normal strain 

 
A case known as simple shear is shown in Fig. 4.1.13a, and that of pure shear is shown 
in Fig. 4.1.13b.  In both illustrations, 0xy .  A pure (rigid body) rotation is shown in 

Fig. 4.1.13c (zero strain). 
 

x
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Figure 4.1.13: (a) simple shear, (b) pure shear, (c) pure rotation 
 
Any shear strain can be decomposed into a pure shear and a pure rotation, as illustrated in 
Fig. 4.1.14. 
 

 
 

Figure 4.1.14: shear strain decomposed into a pure shear and a pure rotation 
 
 
4.1.5 Large Rotations and the Small Strain 
 
The example in section 4.2 above illustrated that the small strain approximation is good, 
provided the deformations are small.  However, this is provided also that any rigid body 
rotations are small.  To illustrate this, consider a square material element which 
undergoes a pure rigid body rotation of  , Fig. 4.1.15.  The exact strains remain zero.  
The small shear strain remains zero also.  However, the small normal strains are seen to 
be cos 1xx yy     .  Using a Taylor series expansion, this is equal to 

2 4/ 2 / 24xx yy        .  Thus, when   is small, the rotation-induced strains are 

of the magnitude/order 2 .  If  is of the same order as the strains themselves, i.e. in the 
range 6 210 10  , then 2  will be very much smaller than   and the rotation-induced 
strains will not introduce any inaccuracy; the small strains will be a good approximation 
to the actual strains.  If, however, the rotation is large, then the engineering normal strains 
will be wildly inaccurate.  For example, when o45  , the rotation-induced normal 
strains are 0.3  , and will likely be larger than the actual strains occurring in the 
material. 
 

x

y

)a( )b( )c(

y

x x

y

arbitrary shear strain 


pure shear pure rotation 


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Figure 4.1.15: an element undergoing a rigid body rotation 
 
As an example, consider a cantilevered beam which undergoes large bending, Fig. 4.1.16.  
The shaded element shown might well undergo small normal and shear strains.  However, 
because of the large rotation of the element, additional spurious engineering normal 
strains are induced.  Use of the precise definition, Eqn. 4.1.7, is required in cases such as 
this.  
 

 
 

Figure 4.1.16: Large rotations of an element in a bent beam 
 
 
4.1.6 Three Dimensional Strain 
 
The above can be generalized to three dimensions.  In the general case, there are three 
normal strains, zzyyxx  ,, , and three shear strains, zxyzxy  ,, .  The zz  strain 

corresponds to a change in length of a line element initially lying along the z axis.  The 

yz  strain corresponds to half the change in the originally right angle of two perpendicular 

line elements aligned with the y and z axes, and similarly for the zx  strain.  Straining in 

the y z  plane ( , ,yy zz yz   ) is illustrated in Fig. 4.1.17 below. 

 

 
 

Figure 4.1.17: strains occurring in the y – z plane 
 
The 3D strains can be represented in the (symmetric) matrix form 
 

x

y

z




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 
xx xy xz

yx yy yz

zx zy zz

  
   

  

 
   
  

                                                 (4.1.11) 

 
As with the stress (see Eqn. 3.4.4), there are nine components in 3D, with 6 of them being 
independent. 
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