
Standing Waves: Strings, standing waves and harmonics 

Introduction: vibrations, strings, pipes, percussion.... 

How do we make musical sounds? To make a sound, we need something that vibrates. 

If we want to make musical notes you usually need the vibration to have an almost 

constant frequency: that means stable pitch. We also want a frequency that can be 

easily controlled by the player. In electronic instruments this is done with electric 

circuits or with clocks and memories. In non-electronic instruments, the stable, 

controlled vibration is produced by a standing wave. Here we discuss the way strings 

work. This also a useful introduction for studying wind instruments, because vibrating 

strings are easier to visualise than the vibration of the air in wind instruments. Both 

are less complicated than the vibrations of the bars and skins of the percussion family. 

For the physics of standing waves, there is a multimedia tutorial. 

Travelling waves in strings 

The strings in the violin, piano and 

so on are stretched tightly and 

vibrate so fast that it is impossible to 

see what is going on. If you can find 

a long spring (a toy known as a 'slinky' works well) or several metres of flexible 

rubber hose you can try a few fun experiments which will make it easy to understand 

how strings work. (Soft rubber is good for this, garden hoses are not really flexible 

enough.) First hold or clamp one end and then, holding the other end still in one hand, 

stretch it a little (not too much, a little sag won't hurt). Now pull it aside with the other 

hand to make a kink, and then let it go. (This, in slow motion, is what happens when 

you pluck a string.) You will probably see that the kink travels down the "string", and 

then it comes back to you. It will suddenly tug your hand sideways but, if you are 

holding it firmly, it will reflect again. 

First you will notice that the speed of the wave in the string increases if you stretch it 

more tightly. This is useful for tuning instruments - but we're getting ahead of 

ourselves. It also depends on the "weight" of the string - it travels more slowly in a 

thick, heavy string than in a light string of the same length under the same tension. 

(Strictly, it is the ratio of tension to mass per unit length that determines speed, as 

we'll see below.) 

Next let's have a close look at the reflection at the fixed end. You'll notice that if you 

initially pull the string to the left, the kink that travels away from you is to the left, but 

that it comes back as a kink to the right - the reflection is inverted. This effect is 

http://www.animations.physics.unsw.edu.au/waves-sound/standing-waves/index.html


important not only in string instruments, but in winds and percussion as well. When a 

wave encounters a boundary with something that won't move or change (or that 

doesn't change easily), the reflection is inverted. (The fact that it is inverted gives zero 

displacement at the end. However, reflection with any phase change will give a 

standing wave.) 

Plucked strings 

If you pluck one of the string on a guitar or bass, you are doing something similar, 

although here the string is fixed at both ends. You pull the string out at one point, then 

release it as shown. The motion that follows is interesting, but complicated. The initial 

motion is shown below. However, the high frequency components of the motion (the 

sharp bends in the string) quickly disappear – which is why the sound of a guitar note 

becomes more mellow a second or more after you pluck it. 

 

A sketch of the reflection of travelling kinks caused by plucking a string. At the 

instants represented by (e) and (m), the string is straight so it has lost the potential 

energy associated with pulling it sideways, but it has a maximum kinetic energy. Note 

that, at the reflections, the phase of the kink is changed by 180°: from up to down or 

vice versa. Notice also how the kinks 'pass through' each other when they meet in the 

middle. 

Why is the reflection inverted? Well, if we assume that it is clamped or tied to a fixed 

object, the point of reflection didn't actually move. But look at the motion of the string 

by comparing the different times represented in the left hand sketches. Note that the 

string behind the kink is moving back towards the undisturbed position (down in the 

sketch). As the kink approaches the end, it becomes smaller and, when it reaches the 

immovable end, there is no kink at all - the string is straight for an instant. But the 



string still has its downwards momentum, and that carries it past the position of rest, 

and produces a kink on the other side, which then moves back in the other direction. 

(The motion of waves in strings is described in more detail in Travelling Waves, 

which has film clips and animations. On this page, however, we'll concentrate on the 

musical implications. ) 

As mentioned above, this motion is only observed immediately after the pluck. As the 

high frequency components lose energy, the sharp kinks disappear and the shape 

gradually approaches that of the fundamental mode of vibraiton, which we discuss 

below. 

A bowed string behaves rather differently 

First, it has a continuous source of energy, and so can maintain the same motion 

indefinitely (or at least until one runs out of bow. Second, the string shape required to 

match the uniformly moving bow is different. 

 

A sketch of the reflection of travelling kinks caused by bowing a string. See the 

animation and an explanation of the bow-string interaction in Bows and strings 

Travelling waves and standing waves 

An interesting effect occurs if you try to send a simple wave along the string by 

repeatedly waving one end up and down. If you have found a suitable spring or rubber 

hose, try it out. Otherwise, look at these diagrams. 

http://www.animations.physics.unsw.edu.au/waves-sound/travelling-waves/index.html
http://www.phys.unsw.edu.au/jw/Bows.html


The animation shows the 

interaction of two waves, with 

equal frequency and 

magnitude, travelling in 

opposite directions: blue to the 

right, green to the left. The red 

line is their sum: the red wave 

is what happens when the two 

travelling waves add together 

(superpose is the technical 

term). By stopping the 

animation, you can check that 

the red wave really is the sum 

of the two interacting travelling 

waves. 

The figure at right is the same 

diagram represented as a time 

sequence - time increases from 

top to bottom. You could think of it as representing a series of photographs of the 

waves, taken very quickly. The red wave is what we would actually see in a such 

photographs. 

Suppose that the right hand limit is an immoveable wall. As discussed above, the 

wave is inverted on reflection so, in each "photograph", the blue plus green adds up to 

zero on the right hand boundary. The reflected (green) wave has the same frequency 

and amplitude but is travelling in the opposite direction. 

At the fixed end they add to give no motion - zero displacement: after all it is this 

condition of immobility which causes the inverted reflection. But if you look at the 

red line in the animation or the diagram (the sum of the two waves) you'll see that 

there are other points where the string never moves! They occur half a wavelength 

apart. These motionless points are called nodes of the vibration, and they play an 

important role in nearly all of the instrument families. Halfway between the nodes 

areantinodes: points of maximum motion. But note that these peaks are not travelling 

along the string: the combination of two waves travelling in opposite directions 

produces a standing wave. 

This is shown in the animation and the figure. Note the positions (nodes) where the 

two travelling waves always cancel out, and the others (antinodes) where they add to 

give an oscillation with maximum amplitude. 



You could think of this diagram as a representation (not to scale) of the fifth harmonic 

on a string whose length is the width of the diagram. This brings us to the next topic. 

Harmonics and modes 

The string on a musical instrument is (almost) fixed at both ends, so any vibration of 

the string must have nodes at each end. Now that limits the possible vibrations. For 

instance the string with length L could have a standing wave with wavelength twice as 

long as the string (wavelength λ = 2L) as shown in the first sketch in the next series. 

This gives a node at either end and an antinode in the middle. 

This is one of the modes of vibration of the string ("mode of vibration" just means 

style or way of vibrating). What other modes are allowed on a string fixed at both 

ends? Several standing waves are shown in the next sketch. 

 

A sketch of the first four modes of vibration of an idealised* stretched string 

with a fixed length. The vertical axis has been exaggerated. 

Let's work out the relationships among the frequencies of these modes. For a wave, 

the frequency is the ratio of the speed of the wave to the length of the wave: f = v/λ. 

Compared to the string length L, you can see that these waves have lengths 2L, L, 

2L/3, L/2. We could write this as 2L/n, where n is the number of the harmonic. 

The fundamental or first mode has frequency f1 = v/λ1 = v/2L, 

The second harmonic has frequency f2 = v/λ2 = 2v/2L = 2f1 



The third harmonic has frequency f3 = v/λ3 = 3v/2L = 3f1, 

The fourth harmonic has frequency f4 = v/λ4 = 4v/2L = 4f1, and, to generalise, 

The nth harmonic has frequency fn = v/λn = nv/2L = nf1. 

All waves in a string travel with the same speed, so these waves with different 

wavelengths have different frequencies as shown. The mode with the lowest 

frequency (f1) is called the fundamental. Note that the nth mode has frequency n times 

that of the fundamental. All of the modes (and the sounds they produce) are called the 

harmonics of the string. The frequencies f, 2f, 3f, 4f etc are called the harmonic 

series. This series will be familiar to most musicians, particularly to buglers and 

players of natural horns. If for example the fundamental is the note C3 or viola C (a 

nominal frequency of 131 Hz: see this link for a table), then the harmonics would 

have the pitches shown in the next figure. These pitches have been approximated to 

the nearest quarter tone. The octaves are exactly octaves, but all other intervals are 

slightly different from the intervals in the equal tempered scale. 

The figure shows the musical notation for the first twelve harmonics on a C 

string. When you play the sound file, listen carefully to the pitch. The seventh 

and eleventh harmonics fall about halfway between notes on the equal tempered 

scale, and so have been notated with half sharps. 

         

You can produce these pitches on a stretched string: it's easiest on the low strings of a 

guitar, cello or bass*. Touch the string lightly at a point 1/n of its length from the end 

(where n is 1, 2, 3 etc), then bow the string close to the end. Alternatively, touch the 

string very lightly at a point 1/n of its length from the end, pluck the string close to the 

end and release the first finger as soon as you have plucked. Touching the string 

produces a node where you touch, and so you excite (mainly) the mode which has a 

node there. You will find that you can play bugle tunes using harmonics two to six of 

a string. 

(* If you have just done this experiment, you may have noticed some peculiarities. 

The twelfth fret, which is used to produce the octave, is less than half way along the 

length of the string, and so the position where you touch the string to produce the 2nd 

harmonic – halfway along the string – is not directly above the octave fret. I said 

"idealised" string above, meaning a string that is completely flexible and so can bend 

easily at either end. In practice, strings have a finite bending stiffness and so their 

effective length (the "L" that should be used in the above formulae) is a little less than 

their physical length. This is one of the reasons why larger strings usually have a 

winding over a thin core, why the bridge is usually at an angle that gives the fatter 

strings longer lengths and why the (solid) G string on a classical guitar has poor 

tuning on the higher frets. There is also an effect due to the extra stretching of a string 

http://www.phys.unsw.edu.au/jw/notes.html


when it is pushed down to the fingerboard, an effect which is considerable on steel 

strings.) 

An exercise for guitarists. On a guitar tuned in the usual way, the B string and high 

E string are approximately tuned to the 3rd and 4th harmonics of the low E string. If 

you pluck the low E string anywhere except one third of the way along, the B string 

should start to vibrate, driven by the vibrations in the bridge from the harmonic of the 

first string. If you pluck the low E string anywhere except one quarter of the way 

along, the top E string should be driven similarly. 

Harmonic tuning on guitars 

Guitarists often begin to tune-up in the 

following way: first tune the 4th harmonic of 

the low E string, the 3rd of the A string and the 

top E all to the same note. The figure at right 

shows the harmonic series on the two lowest 

strings. 

Next they tune the B string (B3) to the 3rd 

harmonic of the first (E2); then tune the 4th 

harmonic of the A string to the 3rd of the D 

string. This method cannot be extended 

succesfully to the G string because it is usually 

too thick and stiff, so it is better tuned by 

octaves, using the frets. For several reasons 

(see the notes at the end of this page), this 

method of tuning is only approximate, and one 

needs to retune the octaves afterwards. The 

best tuning is usually a compromise that must 

be made after considering what chords you 

will be playing and where you are playing on 

the fingerboard. 

 

Guitar tuning by harmonics. (These 

are real pitches: guitar music is 

usually transposed up an octave.) 

Harmonics in music 

Composers often call for such harmonics on string instruments: the most common is 

the "touch fourth". With one finger, the player stops the string to produce the length 

required for a particular note, and then, using another finger, touches the string very 

lightly at the position required for the note four notes higher in the scale (hence the 

name). This position is one quarter of the way along the string, so it produces the 



fourth harmonic of the stopped note. The fourth harmonic has four times the 

fundamental frequency, and so is two octaves higher. For string players, the 

harmonics are called "natural"; when they are played on open strings and "artificial"; 

if the player must stop the string. The diagram shows the how a natural touch fourth is 

played, and the notation for the touch fourth on the violin A string. The vertical axis 

of the diagram has been exaggerated for clarity. 

         

 Open A string played normally, then the touch fourth on this string (4th harmonic) 

The pitch of a note is determined by how rapidly the string vibrates. This depends on 

four things: 

 Thicker, more massive strings vibrate more slowly. On violins, guitars etc, the 

open length of the string doesn't change, and usually the tension doesn't change 

much either (they are all about equally hard to push down). So the low pitched 

strings are thicker. 

 The frequency increases with the tension in the string. This is how you tune the 

instrument, using machine heads or tuning pegs: tighter gives higher pitch. 

 The length of the string that is free to vibrate is also important. When you stop 

a string against the fingerboard of a cello, for example, you shorten the 

effective length and so raise the pitch. 

 You can also change the pitch by changing the mode of vibration. When you 

play harmonics, you induce the string to produce waves which are a fraction of 

the length of those normally produced by a string of that length. 

We can put all of this in a simple expression. If the vibrating part of the string has a 

length L and a mass M, if the tension in the string is F and if you play the nth 

harmonic, then the resulting frequency is 



fn  =  (n/2L)(FL/M)1/2  =  (n/2)(F/LM)1/2. 

In instruments such as the violin and guitar, the open length and the tension are fairly 

similar for all strings. This means that, to make a string an octave lower, while 

maintaining the same length, you must quadruple the ratio M/L. If the strings are 

made of the same material, this means doubling the diameter. However, the fat strings 

are usually composite: a thin core wrapped with windings to make them more massive 

without making them harder to bend. 

Let's see where this expression comes from. The wave travels a distance λ in one 

period T of the vibration, so v = λ/T. The frequency f = 1/T = v/λ. So f  =  v/λ. We 

also saw that, for the fundamental frequency f1, the string length is λ/2, so f1  =  v/2L. 

The wave speed is determined by the string tension F and the mass per unit lenght or 

linear density μ  =   M/L,  v  =  (F/μ)1/2  =  (FL/M)1/2.  So f1  =  ½(F/LM)1/2.  

Multiplying both sides by n gives the frequencies of the harmonics quoted above. 

We can rearrange this to give the string tension:    F  =  4f1
2LM. 

Complications with harmonic tuning 

There are several problems with any guitar tuning, including that using harmonics 

suggested above. 

The most obvious approximation is related to temperament: if the guitar strings were 

ideal and the frets ideally spaced for equal temperament, tuning harmonic fourths to 

the E-A and A-D pairs, plus two equal tempered semitones on the D string, would 

make the interval between lowest E and 2nd fret on the D string about 4 cents flat 

((4/3)222/12=1.996). This would lead to interference beats at rates of order one every 

several seconds. 

Another obvious complication with harmonic tuning is that the strings do not bend 

with complete ease over the nut and bridge (as discussed above). See also How 

harmonic are harmonics.) As a result, the 1st overtone on a string is slightly sharper 

than an octave, the next even sharper than a twelfth, and so on. So tuning the 4th 

'harmonic' of the E string to the 3rd of the A string makes them their open interval 

more than a harmonic fourth. So this tends to compensate for the temperament 

problem. 

A further problem has to do with fret and bridge placement. When you press a string 

down at the twelfth fret, you increase its length. (Before you press it, the shortest 

distance between nut and bridge. Afterwards it is longer.) To lengthen it, you have 

increased its tension. Because of this, and also because of the bending effect at the end 

http://www.phys.unsw.edu.au/jw/harmonics.html
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of the string, if the 12th fret were midway between nut and bridge, the interval would 

be greater than an octave. (You can check this experimentally on a fretless 

instrument.) Consequently, the distance from bridge to the 12th fret is greater than 

that from the nut to the 12th fret. The effect differs among strings. In some electric 

guitars, individual adjustment of the position of each bridge is possible. In other 

guitars, the bridge is placed at an angle. In a classical guitar, the straight simple bridge 

necessitates some compromise in tuning. 

The effects above are difficult measure with experimentally with the required 

precision: the effects are only a few cents, which is not much larger than the precision 

of ears or tuning meters when applied to a pluck string. Further, it is difficult to adjust 

machine heads to achieve a precision better than a couple of cents. On the other hand, 

if you get all notes in tune within a couple of cents, you are doing better than most 

musicians and it will sound pretty good! 

There are further problems when strings get old. Where you finger them with the left 

hand, they pick up grease and become more massive (although they may also lose 

material where they rub on frets). They may also wear where you pick them. As the 

strings become inhomogeneous, the tuning gets successively worse. Washing them 

can help. 

The way to get around most of these problems is to play fretless instruments, but this 

makes chords more awkward. 

Some technical information for string players 

How do you work out harmonics if they are not 

explicitly annotated? Although the touch fourth is 

the most common harmonic, it has a disadvantage 

as an example. A touch fourth produces the fourth 

harmonic, but the two "fourth"s are from quite 

different context. In no other simple case does a 

touch nth produce the nth harmonic. For the low 

harmonics, the rule is obvious: 1/n of the string 

produces the nth harmonic. This formula starts to 

fail at very high numbers where the finite 

thickness of the string is important. Further, it is 

not a reliable way of producing harmonics above 

about the 8th. 

String players will know that, if you play five 

scale notes up a string, you arrive at a position one 

 



third of the way along the string, so a "touch fifth" 

produces the third harmonic. We can write the 

harmonics in the format: 

scale 

position 

touched 

fraction 

of string 

length 

harmonic 

number 

interval 

above open 

string 

octave 1/2 2 octave 

fifth 1/3 3 twelfth 

fourth 1/4 4 
double 

octave 

major third 1/5 5 seventeenth 

minor third 1/6 6 nineteenth 

augmented 

fourth 
2/7 7 

halfsharp 

20th 

minor sixth 3/8 8 triple octave 

major 

second 
1/9 9 twenty third 

 

The scale positions are in just intonation. The touch at 2/9 is safer than that at 1/9, but 

it doesn't fall above any scale note position: it is a little above the minor third. Violists 

or violoncellists rehearsing Radulescu's "Practicing Infinity" (sic) are invited to write 

to me for further suggestions about techniques for high harmonics. 

 

 

 

 

Source: http://www.phys.unsw.edu.au/jw/strings.html 


