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Abstract: - The paper is devoted to one of the problems of the modelling and simulation of the severe accidents 

at the nuclear power plants (NPP) in touch with development and operation of the passive protection systems 

against severe accidents. The results of the mathematical modelling and simulation of the jets penetrating the 

pool of other liquid under diverse conditions as well as an analysis of the experimental data have clearly shown 

that the falling buoyant jets penetrating the pool of other liquid differ a lot from the classical jets moved by 

pressure gradient. For example, the classic scheme with monotone jet radius evolution does not work in this 

case. There is clearly observed phenomenon that jet is going with nearly constant radius up to some point in a 

pool, then at the point of “bifurcation” it substantially changes its radius abruptly (jet switches its one constant 

radius to the another one). These specific peculiarities of the penetrating jets are discussed and mathematical 

modelling of the problem is considered.  

 

Key-Words: - Jet, Penetration, Pool, Bifurcation, Mathematical Modelling, Non-linear Phenomenon, Switch of 

Radius, Passive Protection System. 

 

1 Introduction 
Peculiarities of the penetration dynamics of a 

liquid jet into the other liquid medium have been 

studied in a number of papers [1-15]. Most of the 

earlier studies have been performed in the metal and 

nuclear industries, e.g. [1, 4-7, 9-11]. But the 

problem still remains, especially in the case of the 

thick jets when they are penetrating a pool of other 

liquid without disintegration and in case of 

dominated inertia, drag and buoyancy forces. For 

the thin jets it has been shown [16] that the jet 

instability might be caused by the bending 

perturbations of its axis.  

The objective of present paper is determining the 

penetration behaviours of a thick jet into a fluid pool 

and analysis of the phenomenon that jet is going 

with nearly constant radius up to some point in a 

pool, then at the point of “bifurcation” it 

substantially changes its radius abruptly (jet 

switches its one constant radius to the another one) 

as illustrated by experimental data borrowed from 

[17] shown in Fig. 1. Numerical simulation was 

performed with the computer code Casper [17].  

 

 
 

Fig.1. Jet penetration features: experimental and 

numerical data (initial velocity of the jet was 4m/s) 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS Ivan V. Kazachkov, Vahid Hasani Moghaddam

E-ISSN: 2224-3429 276 Issue 4, Volume 7, October 2012



Both data, experimental and numerical, for 

further support of the above-mentioned peculiarities 

of a jet penetration into a pool are presented in the 

pictures in Fig.2 for the corresponding moments of 

time (in ms): 

 

 
 

Fig.2. Features of a jet penetration into the pool: 

experimental data for initial velocity 4m/s, 6m/s, 

9m/s, respectively (from the top to the bottom)  

This contradicts to the classic jet scheme when 

jet is considering as gradually changing its radius 

due to the losses of the velocity [2, 18]: 

 

 
 

           Fig.3. Schematic description of a jet 

                      penetrating in a fluid at rest 

 

The widening is linear with distance, and all cross-

jet velocity profiles, except those very near the 

orifice, are similar to one another, after suitable 

averaging over turbulent fluctuations. Similar 

schematic representations were considered for the 

laminar jets as well. 

This corresponded very well to a huge number of 

experimental data, e.g. shown in Fig. 4 for the jet 

injected to the melt pool from the orifice under the 

layer of the melt [19].  

 

 

2 The non-linear isothermal model of 

a jet penetration into the liquid pool of 

other density 
 

2.1 Jet penetration into another liquid at the 

non-boiling and isothermal conditions  
To analyze the penetration phenomena of a plunging 

jet into another liquid with various densities a non-

linear analytical and numerical models and CFD 

simulations based on the developed algorithms were 

developed both at the non-boiling and isothermal 

conditions, as well as at the boiling and non-

isothermal conditions. The results were compared 

with a series of visualization tests. In the tests a 10 

mm water jet with an injection velocity up to 9 m/s 

plunges on to a liquid with various densities. The 

general behaviours of the plunging jet consists of 

surface cavity of a pool liquid by the initial impact 

of the jet, air pocket formation during the 
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penetration, radial bottom spreading of the jet and 

entrained air and interfacial instability between the 

pool liquid and entrained air.  

 

 
 

      Fig.4. Experimental data by jet injection 

 

The analytical solutions for continuous and finite 

jets are reasonably described the characteristics of 

the penetration behaviours. The numerical model is 

able to simulate these general behaviours of the 

plunging jet and provides reasonable match on the 

penetration velocities. 

It is clearly observed that the penetrating jet is 

going first with approximately stable radius and then 

is changing its radius abruptly to another bigger one. 

This bifurcation point is explained from the 

analytical solution obtained below. 

 

2.2 Basic assumptions of the mathematical 

model 
The jet penetrating the pool is supposed as a body of 

a variable mass assuming that the jet is moving 

under an inertia force acting against the drag and 

buoyancy forces. The surface forces are supposed to 

be negligible comparing to the three above-

mentioned ones.  

A radius of the jet is assumed to be 

approximately constant during the jet penetration or 

at least during some part of the length of 

penetration. This allows calculating the jet 

penetration process step-by-step in a general case 

taking first the constant jet radius, then the other one 

constant jet radius, and so on. Thus, the equation of 

a jet momentum considering a jet as a body of a 

variable mass is written as follows: 

 

   ,
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1
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1221
1

1 vgh
dt

hvd
                     (1) 

 

where h is the length of a jet penetration into the 

pool, 21 ,   are the densities of the jet and fluid in 

the pool, respectively, 1v  is the jet velocity. 

Obviously here is 1v = dh/dt.  

For the thick jets, which are not prone to the 

bending instabilities (say, their radius is of the same 

order as their length of penetration) we can neglect 

surface forces retaining the only drag force together 

with the buoyancy and inertia forces.  

 

2.3 Dimensionless mathematical model 
In a general case of different densities of a jet and a 

pool when 
12 1 2/ 1    , the non-linear equation 

(1) may be transformed to the dimensionless form: 
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where 1221 /   , Fr=u0
2
/(gr0) is the Froude 

number, which characterizes the ratio of the inertia 

and buoyancy forces. Here the following scales 

were used for the velocity and for the time: u0 and 

0r /u0, respectively.   

It is clearly shown by equation (2), which can be 

treated as a mathematical model of the process, that 

the Froude number and the density ratio of the 

liquid in a pool and jet predetermine completely the 

process of a thick jet penetration into a pool. Let us 

remind ones more that the bending perturbations of 

the axis are not available for the thick jets in 

contrast to the thin jets [17]. 

The initial conditions for the jet momentum 

equation (2) are stated the next ones: 

 

  ,0t    0h ,    0/ udtdh  ,                       (3) 
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where 0u  is the initial velocity of a jet before its 

penetration into the pool. 

 

2.4 Singularity of the initial conditions and 

their treatment 
The initial conditions (3) contain singularity due to 

difference of the jet and pool velocities at their 

contact area at the first moment (t=0). A jet has 

velocity u0, while a pool is in the rest before contact 

(h=0) changing its velocity at the moment of contact 

from 0 to u0. In fact, velocity u0 is going to change 

(decrease) due to a contact of a jet and a pool. If the 

dissipation energy is neglected, then an initial 

velocity is u0 but might cause big inaccuracy in a 

solution of a problem.  

To avoid singularity of the initial conditions (3), 

the following initial conditions might be considered 

instead of the above-mentioned initial conditions: 

 

  0t ,      0hh  ,       pudtdh / ,               (4)  

 

where h0 and up are the initial length and velocity of 

a jet penetration (after a first contact of a jet with a 

pool). The equation (2) is solved with the initial 

conditions (4), where 0h  and pu are computed using 

the Bernoulli equation and the jet momentum 

equation in the form: 
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                                                                               (5) 

       pp uhHuHu 02101   ,                                      

 

where H  is the initial length for the finite jet falling 

into the pool. In case of a jet spreading out of a 

nozzle (not a jet of the finite length), this value is 

determined by a pressure at the orifice outlet as 

shown in Fig. 2.  

Solution of the equation array (5) is presented in 

a dimensionless form as follows 
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2.5 Solution of the Cauchy problem for the 

mathematical model obtained 

The Cauchy problem (2), (6) was solved with the 

special coupled transformations of the dependent 

and independent variables altogether: 
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where 2/1 21A . Then using the equation (7) with 

a few further simple transformations yields the 

following linear second-order equation in the new 

variables: 
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Here y  is a new variable stated by the equation 
yeX  . Finally the solution is  

 

                           
 kk ececy  21 ,  

 

where ,1c 2c  are the constants computed from the 

initial conditions (6). The eigen value k is  

 

                  Frk /)1(5.01)1( 2121   .          

 

In case a pool is denser than a jet ( 21 >1), k is an 

imaginary value, and the solution is  

 

                         y=  kckc sincos ´

2

´

1  .                                                                                                        

 

 

3 The bifurcation of the penetrating 

jet and abrupt change of its radius 
 

3.1 Substantiation of the jet penetrating pool 

schematic with abrupt changes of its radius 
The exact analytical solution thus obtained was 

based on the assumption about the constant jet 

radius; therefore it is strict for a solid rod 

penetration into the pool and for some initial part of 

a jet penetration before the remarkable growing of 

its radius. It might be used as approximate step-by-

step solution for a jet penetration into a pool for 

small temporal intervals correcting the jet radius 

from one to another one.  
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It is highly important to estimate an evolution of 

the jet’s radius to get support of the assumptions 

made or obtain an idea on how to correct solution in 

a good correspondence to the existing experimental 

data. For this the Bernoulli equation and the mass 

conservation equation are considered for the jet 

penetrating a pool as follows: 

 

       0

2

01

2

11211 5.0)5.0)(( SuvhgS    , 

                                                                               (8) 

                       001111 SuSv    . 

 

Here S is the cross section area of the jet. Indexes 0 

and 1 denote the initial state and the current state of 

the jet.   

 

3.2 Dimensionless conservation equations for 

the jet 
In a dimensionless form, retaining the same 

symbols, the equation array (8) yields: 
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The equation array (9) has the following 

solution: 
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                                                                            (10) 
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As follows from (10), both possible values of the jet 

radius are available. One is the initial jet radius 

while the other value means that jet may loose its 

stability and change the radius abruptly as we could 

see from the experimental data above. 

 

3.3 Bifurcation of a jet 
Thus, we have got quite unexpected result (10), 

where from follows that there are two available 

solutions for the jet radius, with the point of 

bifurcation, which depends on the Fourier number 

and density ratio as follows: 

 

                           .
)1(8 21


Fr

h                       (11) 

 

After the point of bifurcation (11) the solution 

(10) does not exist in real numbers, therefore the jet 

can switch its radius abruptly between two available 

stable states.   

The jet starts penetration into the pool with initial  

cross-sections, thus, S1=1. Further analysis of the 

equation (11) shows that for a small penetration 

depth or, more generally, in case of      

                       

                          Frh  )1(8 1/2 ,                  (12) 

 

Solution (10) gives the following pair of the 

available jet radiuses to switch between them: 

  

                               11 S ,     

                                                                             (13) 
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3.4 Specific features of the jet penetration 

Thus, there is no reason for a jet to become abruptly 

from the section area 1 to the bigger one at the 

beginning of its penetration into a pool of other 

liquid because the jet momentum directs mainly 

along its axis. But then, with a jet further 

penetration into a pool, due to instability of a jet 

causing by its free surface perturbations and by a 

loss of momentum, the jet area may change at any 

moment.  

Strictly saying, this phenomenon revealed by 

simple integral analysis requires complete 

investigation of the instability with the bifurcation 

analysis, therefore it is a subject of a separate paper. 

Here only some estimation is been done for the 

moment.   

 

3.5 Calculation of the examples to illustrate 

the results obtained 
Starting penetration into a pool from  S1=1  the jet 

should become to  a cross-section value S1=2  at the 

point   

 

                     1

21
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8(1 ) 8

Fr
h

Ri
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
 , 

 

when further existence of the two possible jet’s 

radiuses is impossible. Here  21(1 ) /Ri Fr    is 

the Richardson number (the ratio between the 

momentum and the buoyancy forces of a jet).   

The phenomenon of a jet penetration into a pool 

of other liquid accounting the results obtained and 

the experimental data presented above may be 

explained as follows. The jet penetrates into a pool 

at the distance 
0hh   determined by the initial 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS Ivan V. Kazachkov, Vahid Hasani Moghaddam

E-ISSN: 2224-3429 280 Issue 4, Volume 7, October 2012



length of a jet, the Froude number and the density 

ratio. In case of a long jet as well as the jet 

permanently spreading out of the nozzle the initial 

penetration length is determined by the Froude 

number and the density ratio. Then jet is going with 

an increase of its radius till 
1hh  , which represents 

the bifurcation point. After this bifurcation point, 

the jet is abruptly switched and further goes with a 

nearly constant radius. Applying the solution 

obtained to those parts  

with their own initial data, the whole jet might be 

computed based on the analytical solution obtained.   

From the equation (13) a jet cross-section at the 

depth of penetration  

0hh   

is as follows:   

 

)411(5.0 21121  S  

 

where from for the density ratio 0.1 yield the 

following two available stable states of the jet: 

 

15,11 S , 07,11 r , 87,01 v , 

and 

87,81 S , 98,21 r , 11,01 v ,
 

 

where from one could see the approximate 

correspondence to the above experimental pictures. 

 

 

4 The non-linear non-isothermal 

model of a jet penetration into the 

liquid pool of other density 
 

4.1 Jet penetration into another liquid at the 

boiling and non-isothermal conditions  
In many practical applications, for example during 

severe accidents at the nuclear power plants (NPP) 

the high-temperature corium melt jet is penetrating 

the pool of volatile coolant.  

Then jet penetration into the coolant is going 

under the non-isothermal conditions and by action 

of the vapor flow against the jet. The schematic 

model for such case is presented in Fig.4. This 

model is taking into account the vapor pressure 

acting on the jet due to high temperature of the jet. 

The other assumptions are similar to the previous 

model. The jet velocity is computed as 1 / ,V dx dt  

где x  is coordinate from the pool surface into the 

pool by jet penetration, x =0 is the equation of the 

pool free surface at the rest. The jet radius is a, the 

length is h, then the initial jet velocity is 0V .  

 

4.2 Mathematical model of the jet 

penetrating pool of volatile coolant 
Development of the model for the described system 

is based on the momentum conservation equation 

written in the following form: 
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dV
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where the cross-sectional area multiplayer S1=πа
2  

is 

omitted. Here g acceleration due to gravity, h  is the 

cylindrical jet length, ρ is the density of the vapor, 

Т1 is the temperature of the vapor, R- universal gas 

constant, α- drag force coefficient (depends on the 

jet form and flow regime.  

 

 
 

Fig.5. Schematic representation of the jet  

   penetrating the pool of volatile coolant 

 

We take the maximum value α=0.5 for 

conservative estimations, β- empirical constant to be 

computed from the experimental data (max β=1). 

 

4.3 The Cauchy problem for the equation 

of the jet penetration 

The non-linear differential equation (14) with the 

initial conditions: 

 

                 t=0,   x=0,   nV
dt

dx
 ,                        (15) 

 

where Vn=V0 for the thin jet and for the thick slow 

jets (or in a pool of small density), represent the 

Cauchy problem for this case. 
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The equation (15) is rewritten in the following 

form: 

                                          

            0)( 2
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 CgAx
dt

dx
A

dt

xd
 ,            (16) 

 

where А=ρ12/h, С=b/h-g, with the х≥h the Ax= 

ρ12=const. 

The time t as a variable is present in the equation 

(16) implicitly, therefore the equation is 

autonomous. By x≥h the equation (16 transforms to 
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4.4 Analytical solution of the equation 

array 

The second-order non-linear differential equation 

(17) has analytical solution. For this, the equation 

better to transform to the dimensionless form, which 

is preferable in many cases as the most general one. 

Thus, the Cauchy problem (17), (15) is 

transformed to a dimensionless form with the 

characteristic velocity V0, characteristic distance а, 

and time a/V0. Then dimensionless form of the 

above equation is getting the next form: 
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where the last term in a second equation (18) by 
_

x >1/ε is equal to (ρ21-1)/Fr
2 

, Fr
2
=V0

2
 /(ga) – the 

Froude number, ε=a/h- the ration of the radius and 

the length of the round jet, 
2

0

_

/Vnb  - ratio of the 

vapor potential energy and kinetic energy of the jet,  

1
_

nv , or 

_

211 4 /(3 )nv     if the shock of the 

jet and free surface of the rest pool is accounted. 

General view of the autonomous equation array 

(18) has the next form 
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where from follows that velocity of the penetrating 

jet tends to falling with time, except the case Ах<1, 

or x<hρ12, which corresponds to the initial stage of 

the jet penetration when 
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where from seen that by substantially big influence 

of the vapor flow on a jet penetration this case is 

impossible, because otherwise it requires:  

 

)1( 21gh >b ,   by x≥h 

or  

bxhg  )( 21  ,  by x<h. 

 

The mathematical model thus developed is 

applied for simulation of the corium jet penetrating 

the pool of volatile coolant under reactor vessel at 

NPP in the passive protection systems against 

severe accidents at NPP. For this, the dimensionless 

form (18), (19) and dimension forms (20) or  (15)-

(17)  are applied. 

 

4.5 Dimensionless analytical solution  
With account of the above-mentioned, the analytical 

solution for the equation array (18) is got as follows: 
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b
c t d

Fr


 

 

  
   
  

    

(23) 

21
321

21

21

21

11
(11

,

)

b
cb

V th Fr
Fr

t




 
 

 

  
  

   
  

    

21 1 b   ,   21

21

11 b
V

Fr



 

 
 . 

 

Here are: 31

_

31

_

,  dc - constants to be computed from 

the initial conditions (19), )/(
_

hgbb  .  

 

 

5 Study of the non-linear non-

isothermal model of a jet penetration 

into the liquid pool of other density 

5.1 Peculiar point of the equation array 
The equation array (18) has peculiar point  

 /)1( 12

_

0

_

bx  , 00

_

v , 

 

which is for the jet without vaporization: 
_

0 12 /x   , 
_

0v =0. 

But as far as (18) satisfies at the interval 
_

х ≤1/ε, the 

peculiar point belongs to the determination region: 

ρ21≥1-
_

b , what corresponds to the solution (21) after 

point 
_

х =1/ε.  

If ρ21<1-
_

b , then a peculiar point is absent and 

solution after the point х=1/ε has the form (21) or 

(22) depending on the velocity of a jet penetration 

into a pool. A jet moves until the point 
_

х =1/ε 

without any peculiarities and continues its 

movement after the point 
_

х =1/ε in accordance with 

the solution (21)-(23) thus obtained.  

In a peculiar point 
0x x  the jet velocity 

becomes zero (jet stops – does not exist anymore as 

a jet or continues its movement if it is denser jet 

than a pool, due to gravitation). 

The maximal penetration length of a jet into a 

pool by m<0 (jet velocity decreases with x ) is the 

same as by m>0 (jet velocity increases with x ). The 

difference is only that in a first case *V >0 (jet is 

moving in a pool downwards), while in a second 

case *V <0 (jet moves in the opposite direction – 

vertically up in a pool). Thus, a jet decelerates until 

the point of a rest and then moves up, or it stops at 

the point x = *x  ( *V =0, by m=0). 

In an absence of vaporization in a pool (
_

b =0), 

the peculiar point is absent if pool is lighter than a 

jet (or penetrating a pool solid body). The peculiar 

point is moving inside the pool (the jet penetration 

length is growing) with decrease of a jet radius and 

density ration of the pool and jet. 

Vaporization in a pool decreases this critical 

level up to zero value, and available even shock due 

to a vapor explosion, 
_

b >1.  

 

5.2 Phase trajectories of a jet 
The second equation of the equation array (18) may 

be divided by the first one and get the following 

equation for the phase trajectories of the system: 

                          

      
_

2

__

21

2_
2

21

_

_

1

vFr

bxvFr

xd

dv 



,          (24)                                             

 

with the boundary conditions: 
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                0
_

x ,      nvv
__

 .                                (25) 

 

The first-order differential equation (24) 

determines for each point (
_

x ,
_

v ) the corresponding 

direction of the going through it curve 
__

/ xdvd . 

Thus, a field of such directions («portrait» of the 

differential equation on a phase plane) allows 

producing a sketch )(
__

xv  and then determine the 

solution of the equation by the stated initial values 

of the 
_

x  and 
_

v . Let us start from the points of 

constant jet velocity directions mxdvd 
__

/        

(isoclines, or the lines of the equal jet velocity 

gradients).  

According to the above stated: 

 01
_

21

__
2

2_
2

21  xbvmFrvFr  ,  

 

where from  

 

Fr

xbFrmmFr
v

21

_

21

_

21

22

2.1

_

2

)1(4



 
 . 

(26) 

 

Following the (26), one can get the condition for 

real jet velocity (real 
_

v ): 

 

2

122

22

0

__

12

22

12
*

__

4
)

4
1( 






 Frm
xb

Frm
xx  . 

                              (27) 

The equation (27) forecasts the maximal available 

length of a jet penetration into a pool by all possible 

parameters of the system of study. By m=0 for 

example (zero gradient, jet is moving with constant 

speed by 
_

х ) yields 
_

х *=
_

х 0.  

The phase trajectories of a jet are illustrated in 

Fig. 6. There are available the following situations: 

 ρ21≥1-
_

b , the peculiar point is inside the 

definition region of the equations (18), 
_

х 0<1/ε, 

and a jet can rich maximal penetration length 

(
_

х *≤1/ε) or continue its movement inside the 

pool according to the equations (21)-(23), if 
_

х *>1/ε; 

 ρ21<1-
_

b , the peculiar point is outside the 

definition region of the equations (18) (
_

х 0>1/ε, 

and by 
_

х *>1/ε even stronger than previous 

condition), therefore a jet moves until the point 
_

х =1/ε without any peculiarities and continues 

movement after the point 
_

х =1/ε according to 

the equations (21)-(23). 

 

 

 
 

 Fig.6. Phase portrait of a jet penetrating  

pool of volatile coolant 
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In a peculiar point 
0x x  jet velocity equal zero 

and it stops.  

 

5.3 Vapor explosion in a pool 
In case of a vapor explosion in a pool (big 

difference in a temperature between a jet and a pool 

determines the process together a heat capacity 

factor) the jet penetration length may be short.  One 

can estimate it by the initial maximal velocity 

gradient when a jet just starts to penetrate the pool:     

 

            
2 2

21
0 2

1n

n

V Fr b
m

Fr V

  
  ,                (28)   

         

Then by 
2 2

* 211 nb V Fr   a jet cannot 

penetrate a pool at all and with account of a shock 

on pool surface yields: 

                                                         

         2 2

* 21 21

4
1 (1 )

3
b Fr


 


   ,              (29)      

              

For a thin jet and low density of a pool (more 

generally, 21 1  ) the equation (29) results in 

2

* 211b Fr  , which means by low jet velocity 

when 
2 ~1Fr  or 

2 1Fr   that a jet weight is 

equalized by the vapour pressure. By 
2 1Fr   the 

value of *b  may substantially prevail unite. 

 

5.4 Numerical simulation of the system on 

computer 
Some results of a computer simulations for the 

phase trajectories of a jet penetration into a pool of 

volatile coolant by the mathematical model 

developed were presented in Fig.6. 

 Let us analyze the results more in deep. The 

phase trajectories were presented for the next 

conditions: 

 

1 0( ) 0x

dV
m

dx
  ,  2 0m  ,  2 1m m ,  

3 0,m    4 0,m    4 2m m  ,  

5 0,m    5 1m m  ,  

 
*x  is a maximal jet penetration into a pool and 0x  

is a such critical point that all the trajectories (all 

isoclines) are going through it up to a point of the jet 

rest. 

A peculiarity of the results obtained, as shown in 

Fig.6, is symmetry of the phase portrait with regards 

to an axis x for the same values of the parameter m 

of the opposite signs. The trajectory for m=0 is 

symmetrical regarding the axis x. Dashed lines 

depict trajectories of a jet for different available 

conditions of its penetration into a pool. An 

interesting peculiarity is that none of the jet  

trajectories goes through the phase trajectory m=0, 

independently of the starting jet penetration velocity 

(initial jet velocity gradient m). 

5.5 Specific features of the results obtained 
Despite a remarkable number of the papers done on 

a subject [20-31], the results obtained revealed 

some special features of a jet penetration into a pool, 

which may be of interest for the experts, both 

theoretical and experimental one. 

 

 

6 Conclusion 
 

The jet penetrating a pool of other liquid was 

investigated for different conditions. The problem is 

of interest for modelling and simulation of the 

severe NPP accidents in touch with development 

and operation of the passive protection systems. 

Analyses on the penetration phenomena of a jet into 

another liquid at the isothermal and non-isothermal 

conditions were performed and compared to the data 

from literature. The non-linear analytical models for 

the jet to predict the maximum penetration into a 

pool were developed and reasonably described the 

characteristics of the penetration behaviours.   

The results of the mathematical modelling and 

simulation of the jets penetrating the pool of other 

liquid under diverse conditions as well as an 

analysis of the experimental data have clearly 

shown that the falling buoyant jets penetrating the 

pool of other liquid are quite different from the 

classical jets going under pressure gradient. For 

example, the classic scheme with monotone jet 

radius evolution does not work in this case. There is 

clearly observed phenomenon that jet is going with 

nearly constant radius up to some point in a pool, 

then at the point of “bifurcation” it substantially 

changes its radius abruptly (jet switches its one 

constant radius to the other one). These specific 

peculiarities of the penetrating jets were discussed 

and explained. 
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