
Simple Harmonic Motion: What is a Sound Spectrum? 

A sound spectrum displays the different frequencies present in a sound. 

Most sounds are made up of a complicated mixture of vibrations. (There is an 

introduction to sound and vibrations in the document "How woodwind instruments 

work".) If you are reading this on the web, you can probably hear the sound of the 

fan in your computer, perhaps the sound of the wind outside, the rumble of traffic - 

or perhaps you have some music playing in the background, in which case there is 

a mixture of high notes and low notes, and some sounds (such as drum beats and 

cymbal crashes) which have no clear pitch. 

A sound spectrum is a representation of a sound – usually a short sample of a 

sound – in terms of the amount of vibration at each individual frequency. It is 

usually presented as a graph of either power or pressure as a function of frequency. 

The power or pressure is usually measured in decibels and the frequency is 

measured in vibrations per second (or hertz, abbreviation Hz) or thousands of 

vibrations per second (kilohertz, abbreviation kHz). You can think of the sound 

spectrum as a sound recipe: take this amount of that frequency, add this amount of 

that frequency etc until you have put together the whole, complicated sound. 

Today, sound spectra (the plural of spectrum is spectra) are usually measured using 

 a microphone which measures the sound pressure over a certain time 

interval, 

 an analogue-digital converter which converts this to a series of numbers 

(representing the microphone voltage) as a function of time, and 

 a computer which performs a calculation upon these numbers. 

Your computer probably has the hardware to do this already (a sound card). Many 

software packages for sound analysis or sound editing have the software that can 

take a short sample of a sound recording, perform the calculation to obtain a 

spectrum (a digital fourier transform or DFT) and display it in 'real time' (i.e. after 

a brief delay). If how have these, you can learn a lot about spectra by singing 

sustained notes (or playing notes on a musical instrument) into the microphone and 

looking at their spectra. If you change the loudness, the size (or amplitude) of the 

spectral components gets bigger. If you change the pitch, the frequency of all of 

the components increases. If you change a sound without changing its loudness or 

its pitch then you are, by definition, changing its timbre. (Timbre has a negative 

definition - it is the sum of all the qualities that are different in two different 
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sounds which have the same pitch and the same loudness.) One of the things that 

determines the timbre is the relative size of the different spectral components. If 

you sing "ah" and "ee" at the same pitch and loudness, you will notice that there is 

a big difference between the spectra. 

What is a Sound Spectrum? 

A sound spectrum displays the different frequencies present in a sound. 

Most sounds are made up of a complicated mixture of vibrations. (There is an 

introduction to sound and vibrations in the document "How woodwind 

instruments work".) If you are reading this on the web, you can probably hear 

the sound of the fan in your computer, perhaps the sound of the wind outside, 

the rumble of traffic - or perhaps you have some music playing in the 

background, in which case there is a mixture of high notes and low notes, and 

some sounds (such as drum beats and cymbal crashes) which have no clear 

pitch. 

A sound spectrum is a representation of a sound – usually a short sample of a 

sound – in terms of the amount of vibration at each individual frequency. It is 

usually presented as a graph of either power or pressure as a function of 

frequency. The power or pressure is usually measured in decibels and the 

frequency is measured in vibrations per second (or hertz, abbreviation Hz) or 

thousands of vibrations per second (kilohertz, abbreviation kHz). You can think 

of the sound spectrum as a sound recipe: take this amount of that frequency, add 

this amount of that frequency etc until you have put together the whole, 

complicated sound. 

Today, sound spectra (the plural of spectrum is spectra) are usually measured 

using 

 a microphone which measures the sound pressure over a certain time 

interval, 

 an analogue-digital converter which converts this to a series of numbers 

(representing the microphone voltage) as a function of time, and 

 a computer which performs a calculation upon these numbers. 

Your computer probably has the hardware to do this already (a sound card). 

Many software packages for sound analysis or sound editing have the software 

that can take a short sample of a sound recording, perform the calculation to 
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obtain a spectrum (a digital fourier transform or DFT) and display it in 'real 

time' (i.e. after a brief delay). If how have these, you can learn a lot about 

spectra by singing sustained notes (or playing notes on a musical instrument) 

into the microphone and looking at their spectra. If you change the loudness, the 

size (or amplitude) of the spectral components gets bigger. If you change the 

pitch, the frequency of all of the components increases. If you change a sound 

without changing its loudness or its pitch then you are, by definition, changing 

its timbre. (Timbre has a negative definition - it is the sum of all the qualities 

that are different in two different sounds which have the same pitch and the 

same loudness.) One of the things that determines the timbre is the relative size 

of the different spectral components. If you sing "ah" and "ee" at the same pitch 

and loudness, you will notice that there is a big difference between the spectra. 

 

In this figure, the two upper figures are spectra, taken over the first and last 0.3 

seconds of the sound file. The spectrogram (lower figure) shows time on the x 

axis, frequency on the vertical axis, and sound level (on a decibel scale) in false 

colour (blue is weak, red is strong). In the spectra, observe the harmonics, which 

appear as equally spaced components (vertical lines). In the spectrogram, the 

harmonics appear as horizontal lines. In this example, the pitch doesn't change, 

so the frequencies of the spectral lines are constant. However the power of every 

harmonic increases with time, so the sound becomes louder. The higher 

harmonics increase more than do the lower, which makes the timbre 'brassier' or 



brighter, and also makes it louder. 

Spectra and harmonics 

If you have tried looking at the spectrum of a musical note, or if you have 

looked at any of the sound spectra on our web pages then you will have noticed 

they have only a small number of prominent components at a special set of 

frequencies. Here is a sound spectrum for the note G4 played on a flute (from 

our site on flute acoustics), which is convenient because the pitch of this note 

corresponds approximately to a frequency of 400 Hz, which is round number for 

approximate calculations. 

 

The sound spectrum of the flute playing this note has a series of peaks at 

frequencies of 

400 Hz   800 Hz   1200 Hz   1600 Hz   2000 Hz   2400 Hz etc,     which we can 

write as: 

f   2f   3f   4f ... nf ... etc, 

where f = 400 Hz is the fundamental frequency of vibration of the air in the 
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flute, and where n is a whole number. 

This series of frequencies is called the harmonic series whose musical 

importance is discussed in some detail in "The Science of Music". The 

individual components with frequencies nf are called theharmonics of the note. 

The fundamental frequency of G4 is 400 Hz. This means that the air in the flute 

is vibrating with a pattern that repeats 400 times a second, or once every 1/400 

seconds. This time interval - the time it takes before a vibration repeats - is 

called the period and it is given the symbol T. Here the frequency f = 400 cycles 

per second (approximately) and the period T = 1/400 second. In other words 

T = 1/f. 

where T is the period in seconds, and f the frequency in hertz. In acoustics, it is 

useful to note that this equation works too for frequency in kHz and period in 

ms. 

If we were to look at the sound of a G4 tuning fork, we would find that it 

vibrates at (approximately) 400 times per second. Its vibration is particularly 

simple – it produces a smooth sine wave pattern in the air, and its spectrum has 

only one substantial peak, at (approximately) 400 Hz. You know that the flute 

and the tuning fork sound different: one way in which they are different is that 

they have a different vibration pattern and a different spectrum. So let's get back 

to the spectrum of the flute note and the harmonic series. This is a harmonic 

spectrum, which has a special property, which we'll now examine. 

Consider the harmonics of the flute note at 

f   2f   3f   4f ... nf , 

The periods which correspond to these spectral components are, using the 

equation given above: 

T   T/2   T/3   T/4 ... T/n . 

Consider the second harmonic with frequency 2f. In one cycle of the 

fundamental vibration (which takes a time T) the second harmonic 

has exactly enough time for two vibrations. The third harmonic has exactly 

enough time for three vibrations, and the nth harmonic has exactly enough time 

http://www.phys.unsw.edu.au/jw/woodwind.html#harmonic
http://www.phys.unsw.edu.au/~jw/SciMus.html


for n vibrations. Thus, at the end of the time T, all of these vibrations are 'ready' 

to start again, exactly in step. It follows that any combination of vibrations 

which have frequencies made up of the harmonic series (i.e. with f, 2f, 3f, 4f, .... 

nf) will repeat exactly after a time T = 1/f. The harmonic series is special 

because any combination of its vibrations produces a periodic or repeated 

vibration at the fundamental frequency f. This is shown in the example below. 

Beofre we leave this example however, let's look between the harmonics. In 

both of the examples shown above, the spectrum is a continuous, non-zero line, 

so there is acoustic power at virtually all frequencies. In the case of the flute, 

this is the breathy or windy sound that is an important part of the characteristic 

sound of the instrument. In these examples, this broad band component in the 

spectrum is much weaker than the harmonic components. We shall concentrate 

below on the harmonic components, but the broad band components are 

important, too. 

An example of an harmonic spectrum: the sawtooth wave 

The graph below shows the first six harmonics of a sawtooth wave, named for 

its shape. On the left is the (magnitude) spectrum, the amplitudes of the 

different harmonics that we are going to add. The upper right figure shows six 

sine waves, with frequency f, 2f, 3f etc. The lower figure shows their sum. (As 

more and more components are added, the figure more closely approaches the 

sawtooth wave with its sharp points.) 
 

 



 

When you hear a complex spectrum built up one harmonic at a time, you can 

clearly hear the individual 'notes' in the 'chord'. You may also be able to hear the 

harmonics in a sustained note. However, if you hear a series of notes, each 

containing several harmonics, you hear each successive note as an entity, and it is 

much more difficult to distinguish the individual harmonics. This is demonstrated 

in the example below. The first note of the melody is synthesised sequentially, 

using the harmonics in the example given above. 

The spectrum can be regarded as like a recipe for making up the whole waveform: 

take this much (a1) of frequency f, this much (a2) of frequency 2f,... plus thus much 

(Aan) of frequency nf,.... , and add them together. (For a sound wave, the vertical 

axis on all these graphs could be sound pressure p.) (If you are an organist, you 

will be familiar with this principle. Adding those harmonics sounds much like 

coupling ranks of organ pipes. If you were to couple 16', 8', 5.33', 4',3.2' and 2.67' 

flutes, then play a melody, you would get much the same effect.) In this example, 

we have added all the components in phase (starting from zero at the same time). 

This is a special case and, in general, the phase constant at each frequency would 

make up a part of the spectrum, too. 

The result we have just shown is (roughly speaking) one side of a theorem proved 

by the French mathematician Fourier. He showed that it is also true in the other 



direction: a repeated vibration with fundamental frequency f can always be made 

up of a combination of vibrations with the harmonic frequencies f, 2f, 3f, 4f, .... 

nf). 

This other direction is difficult to demonstrate without mathematics, though you 

will see that the sound spectra for the flute notes have harmonic spectra. You may 

nevertheless notice some strange behaviour for some of the higher notes. 

 First, we only show the spectra up to 4 kHz for low notes and 8 kHz for high 

ones. Therefore, once the notes get to the top half octave of the flute (C7 and 

above), the fourth and higher harmonics are already off scale. 

 Second, you will see some "sub-harmonics" in a few notes. Look for 

example at the sound spectrum of the note E6 played without the "split E" 

mechanism. The strong peak at approximately 1320 Hz is the fundamental 

for E6, and you can see the strong peaks for the 2 times, 3 times, 4 times and 

5 times this frequency. All as expected, but you will also notice some 

weaker peaks at 440 Hz and 880 Hz, corresponding to the notes A4 and A5. 

So why don't we hear this note as A4, with a particularly strong 3rd 

harmonic? Well, remember that the vertical scale is in decibels. The two 

subharmonics are 41 and 45 dB below the component at 1320 Hz so the 

subharmonics have less than 0.01% of the power of the fundamental. 

(Further, as the frequency falls below 1000 Hz, the sensitivity of the human 

ear decreases substantially with frequency over the range below 1000 Hz, 

which also diminishes the contribution we might hear from the low 

frequency components.) 

If you look at the spectrum for the flute impedance for this fingering 

(especially for the flute without a split E mechanism) you will see why: the 

flute has impedance minima at 440, 880, 1320 and several other frequencies, 

and so it is difficult to put acoustic power into the flute without exciting 

these other vibrations, at least to a little. (This creates other problems for 

flutists, too. See Why is Acoustic Impedance Important?) 

So why don't we hear A4? Well, remember that the vertical scale is 

in decibels. The A4 is 40 dB below the component at 1320 Hz and so has 

about 0.01% of the power of the fundamental. (Further, the sensitivity of the 

human ear increases substantially with frequency over the range below 1000 

Hz, which also diminishes the contribution we might hear from the low 

frequency components.) 
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 Third, you will notice that the sound spectra of the notes in the top range 

(see e.g. E7) of the flute contain some small components that are not even in 

the harmonic series. These notes are not easy to play (observe the weakness 

of the relevant minimum in the impedance spectrum), and can only be 

played loudly (if at all). The sound of the blast of air from the player's mouth 

(try blowing very hard with your mouth almost entirely shut) contributes 

measurably to the spectrum in these cases. 

 The multiphonic spectra (see D5 with F5) look a little like two or more sets 

of spectra at once. i.e. they look at bit like 

f, 2f, 3f etc, and also 

g, 2g, 3g etc, 

where f and g are the fundamental frequencies of the notes in the 

multiphonic chord. But it is a bit more complicated than this, and you will 

notice some other small but non-negligible components at other frequencies, 

including e.g. 2g-f. 

Finally, an important caveat. Introductory physics text books sometimes give the 

impression that the spectrum is the dominant contribution to the timbre of an 

instrument, and that certain spectra are characteristic of particular instruments. 

With the exception of the closed pipes mentioned above, this is very misleading. 

Some very general or vague comments can be made about the spectra of different 

instruments, but it is not possible to look at a harmonic spectrum and say what 

instrument it comes from. Further, it is quite possible for similar spectra to be 

produced by instruments that don't sound very similar. For instance, if one were to 

take a note played by a violin and filter it so that its spectrum were identical to a 

given spectrum for a trumpet playing the same note, the filtered violin note would 

still sound like a violin, not like a trumpet. 

Here are some general statements about spectra: 

 bowed strings and winds have harmonic spectra 

 plucked strings have almost harmonic spectra 

 tuned percusion have approximately harmonic spectra 

 untuned percusion have nonharmonic spectra 

 the low register of the clarinet has mainly odd harmonics 

 bowed strings have harmonics that decrease relatively slowly with frequency 

 brass instruments often have spectra whose harmonics have amplitudes that 

increase with frequency and then decrease. 
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To say anything that is much more specific than that is misleading. 

 

 

Source: http://www.phys.unsw.edu.au/jw/sound.spectrum.html 


