Types of patterns used in sand casting
(a) solid pattern
(b) split pattern
(c) match-plate pattern
(d) cope and drag pattern

Pattern Allowances
Five types of allowances were taken into consideration for various reasons. They are described as follows:
1. Shrinkage allowance
2. Draft allowance
3. Finish allowance
4. Shake allowance
5. Distortion allowance

Desirable Mold Properties and Characteristics
• Strength - to maintain shape and resist erosion
• Permeability - to allow hot air and gases to pass through voids in sand
• Thermal stability - to resist cracking on contact with molten metal
• Collapsibility - ability to give way and allow casting to shrink without cracking the casting
• Reusability - can sand from broken mold be reused to make other molds.
Testing of Mould & Core sand
1) Preparation of standard test specimen
2) Mould hardness test
3) Core hardness test
4) Moisture content test on foundry sand
5) Sieve analysis
6) Clay content test
7) Permeability test
8) Compression, shear test

Other Expendable Mold Casting
- Shell Molding
- Vacuum Molding
- Expanded Polystyrene Process
- Investment casting
- Plaster and Ceramic Mold casting

Steps in shell-molding
Shell-mold casting yields better surface quality and tolerances. The process is described as follows:
The 2-piece pattern is made of metal (e.g. aluminum or steel), it is heated to between 175°C - 370°C, and coated with a lubricant, e.g. silicone spray.
Each heated half-pattern is covered with a mixture of sand and a thermoset resin/epoxy binder. The binder glues a layer of sand to the pattern, forming a shell. The process may be repeated to get a thicker shell.
The assembly is baked to cure it.
The patterns are removed, and the two half-shells joined together to form the mold; metal is poured into the mold.
When the metal solidifies, the shell is broken to get the part.
Advantages

- Smoother cavity surface permits easier flow of molten metal and better surface finish on casting
- Good dimensional accuracy
- Machining often not required
- Mold collapsibility usually avoids cracks in casting
- Can be mechanized for mass production

Disadvantages

- More expensive metal pattern
- Difficult to justify for small quantities

Investment Casting

- Investment casting produces very high surface quality and dimensional accuracy.
- Investment casting is commonly used for precision equipment such as surgical equipment, for complex geometries and for precious metals.
- This process is commonly used by artisans to produce highly detailed artwork.
- The first step is to produce a pattern or replica of the finished mould. Wax is most commonly used to form the pattern, although plastic is also used.
- Patterns are typically mass-produced by injecting liquid or semi-liquid wax into a permanent die.
- Prototypes, small production runs and specialty projects can also be undertaken by carving wax models.
- Cores are typically unnecessary but can be used for complex internal structures. Rapid prototyping techniques have been developed to produce expendable patterns.
- Several replicas are often attached to a gating system constructed of the same material to form a tree assembly. In this way multiple castings can be produced in a single pouring.

Casting with expendable mould: Investment Casting

Advantages

- Parts of great complexity and intricacy can be cast
- Close dimensional control and good surface finish
- Wax can usually be recovered for reuse
- Additional machining is not normally required - this is a net shape process

Disadvantages

- Many processing steps are required
- Relatively expensive process

Source: http://nprcet.org/e%20content/mech/MT.pdf