
Abstract—This paper presents the adaptive control scheme 
with sliding mode compensator for vibration control problem 
in the presence of disturbance. The dynamic model of the
flexible cantilever beam using finite element modeling is
derived. The adaptive control with sliding mode compensator 
using output feedback for output tracking is developed to
reject the external disturbance, and to improve the tracking 
performance. Satisfactory simulation results verify that the 
effectiveness of adaptive control scheme with sliding mode
compensator.

Keywords—finite element model, adaptive control, sliding mode 
control, vibration suppression

I. INTRODUCTION

IEZOELECTRIC ceramic patches have received much 
attention in vibration control of structures in recent years, 
because piezoelectric ceramic materials have mechanical 

simplicity, small volume, light weight, large useful bandwidth, 
efficient conversion between electrical energy and mechanical 
energy, and easy integration with various metallic and 
composite structures. Smart structures can exhibit time-variant 
and non-linear characteristics. It is challenging to control such 
structures. It is necessary to use adaptation algorithm to 
compensate the control loop, and to be robust to the changes 
in the disturbance, and to suppress vibration of the smart 
structure. Tao and Kokotovic [1], Ioannou and Sun [2] [3] 
proposed the typical model reference adaptive control 
structure and developed the adaptive laws. Ma [4] developed 
novel adaptive filtering algorithm and hybrid control scheme 
for vibration control of smart structures with bonded PZT 
Patches. Baumann [5] studied the potential of an adaptive 
feedback approach to structural vibration suppression. Clark 
[6] developed an adaptive truss as part of a steel beam flexible 
structure assembly to control vibrations without the use of a 
system model. Recently, adaptive control has been applied to 
a number of flexible systems. Canbolat [7] regulated the 
vibration of a flexible cable adaptively. New adaptive 
vibration isolation control strategies are developed based on 
Lyapunov theory by Ertur [8], and regulation and tracking 
controllers cancel unknown disturbances while compensating 
for parametric uncertainty.   
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 Sliding mode control is robust control technique which has 
many attractive features such as good transient, fast response, 
easy realization, and insensitivity to the variation of plant 
parameters and external disturbance. The variable structure 
sliding mode control is designed and analyzed in [14] by Liu.  
Song [11], [12] proposed a smooth robust compensator and 
smooth robust tracking controller for SMA wire actuator. Lee 
[15], [16] developed a variable structure augmented adaptive 
controller for a platform and an adaptive variable structure 
output tracking controller. Wang [13] proposed an adaptive 
sliding mode controller for a microgravity isolation system. 
The adaptive sliding mode control has the advantages of 
combining the robustness of variable structure methods with 
tracking capability of adaptive control strategies.  
      This paper investigates the feasibility of adaptive control 
scheme with sliding mode compensator for vibration 
suppression of flexible beam in the presence of disturbance. 
The adaptive control with sliding mode compensator is 
developed to reject the disturbance, and to improve the 
tracking performance. A smooth sliding mode compensator is 
used to reject control chattering. This paper is organized as 
follows. In section 2, finite element modeling of dynamics 
response of flexible beam system with PZT patches is derived 
and analyzed.  In section 3 and 4, the adaptive control scheme 
with sliding mode compensator using output feedback for 
output tracking is developed.  Section 5 describes simulation 
results.  Section 6 summarizes the paper. 

II. FINITE ELEMENT MODEL

 The flexible beam shown in Fig. 1 is modeled using the 
finite element method [9]. The structure is divided into 
elements that are connected at a finite number of points, called 
nodes. The motion of the points in the element is defined in 
terms of nodal displacement and using interpolation functions. 
Therefore, we first find the stiffness and mass matrices of the 
elements. The elements are assembled to determine the 
stiffness and mass matrices of the structure. It was determined 
that no more than three lowest modes are significant in the 
response of the appendage and thus would be considered in 
the simulations. For the analysis, six elements were used to 
characterize the structure. The model was constructed using 
Matlab for flexible beams. The flexible arm was divided into 
six elements and motion was considered to be in-plane 
bending based on the cantilever action. The system consists of 
6 elements and 7 nodes. PZT sensors and actuators are 
attached to the element 2 of the beam. The PZTs add to the 
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beam's stiffness and hence increase the fundamental 
frequency. 

Fig. 1 Elemental model of the flexible beam 

  The following are equations and procedure in finite element 
modeling. The general relationship for the electro-mechanical 
coupling is given by 
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where D is the displacement, S is the strain, E is the 
electric field, T is the stress, s  is the compliance and d  is 
the piezoelectric constant. The subscripts are tensor notation 
where the 1- and 2-axes are arbitrary in the plane 
perpendicular to the 3-axis poling direction of the 
piezoelectric material. Using the fact that the elastic constant 
for piezoceramic material, s , is the inverse of its Young’s 
modulus, pE , this equation can be written as 
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The equation for the elemental potential energy is given by 
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where the two terms in the integral represent mechanical 
energy and electrical energy respectively. Using pW as width 
of the piezoceramic wafer, pt  is thickness of piezoceramic, 
is half of the thickness of beam, 3  is the permittivity of 
piezoelectric material, pE is the elastic modulus, 31d  is the 
piezoelectric charge coefficient and 3E  is the applied field 
intensity. The general form of the energy equation is  
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where pb kkK , bk  is stiffness matrix for the structure, pk
is stiffness matrix for the piezoceramic, , q  is the generalized 
coordinate and B  is the electro-mechanical coupling term 

which represents the conversion of  electrical voltage to 
mechanical displacement. ][ 4321 bbbbBT .
The detailed physical parameter meaning and specifications of 
the flexible beam and piezoceramic properties on the flexible 
beam are given in Table 1 and 2 in section 5.   The total 
kinetic energy is given by 
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where pb MMM , and bM  is mass matrix for beam,  

pM  is mass matrix for PZT.  
The Lagrangian function L  is
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The Lagrangian equation is  
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The equation for the actuator is
aBeKqqM                                                     (10)

where pb MMM and ae is applied voltage. 

The piezoceramic sensor voltage output is qBe T
s . We 

have considered only an element. The equation for the global 
form is determined by combining the equations. 

III. ADAPTIVE CONTROL DESIGN
 For control of the flexible beam, the model reference adaptive 
control scheme is well suited for vibration suppression 
problem in the presence of disturbance to minimize the 
displacement at the tip of flexible beam. 

Consider the nth order linear time-invariant plant described by                  

)(
)(
)(

))(( du
sR
sZ

kdusGy p
p

p
pppp                            (11)                   

where r  is the reference input which is assumed to be a 
uniformly bounded and piecewise continuous function of 
time, d  is a bounded disturbance. The disturbance d  satisfies 

0,)( tdtd                                                 (12) 

where d is positive constant.   

The transfer function of the reference model is given by          
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The model reference control objective is to determine the 
plant input pu so that all signals are bounded and the plant 
output py tracks the reference model output my  as close as 
possible for any given reference input )(tr . Without loss of 

generality, assume the relative degree *n  of the plant  is 
2*n . The plant with relative degree 2*n  can be 

discussed in the similar way.  The plant and reference model 
satisfy the assumptions as [1] and [2].Following the procedure 
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as Tao and Kokotovic [1], Ioannou and Sun [2], [3], the 
standard adaptive control scheme  

ryy
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where Tnn sss(s ]1,...,,,[) 32  for 2n , 3  and 
1
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nR , )(s  is an arbitrary monic Hurwitz 
polynomial of degree 1n  that contains )(sZm  as a factor.

In the adaptive control problem, the parameters of )(sGp  are 
unknown so that 321 ,,  and 4  cannot be determined a 
priori and have to be updated from an adaptive law. The 
simplified control law is  
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The error equations can be derived as 
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where mp kk /* , e  is the state error. The state space 
representation of the plant and controller can be described as
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The error equations can be transformed as                                                                                      
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where 0T  and 0T
cc PP  satisfy the algebraic 

equation
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The time derivative V of V is given by 
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Because 1eBPe cc
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In fact this is the part of desired adaptive law, which leads to 
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This proves that eV,  and L
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mp yye1 , we also have Ly p .  since w,  and 

,1 Le  we have L  and Lu p , and therefore all 
signal in the closed-loop plant are bounded. From equation 
(24) we also have Le , Le1 , together with 

2
1 LLe , implies that 0)(1 te  as 0t .
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fp 00 ()(  implies that   

wu TT
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adaptive law, the control laws can be implemented without the 
use of  differentiators, so the control law and adaptive law are                     
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The MRAC scheme guarantees that all signals in the closed-
loop plant are bounded and tracking error 1e converges to zero 
asymptotically under enough rich excitation signals. 

IV. ADAPTIVE SLIDING MODE CONTROL

The sliding mode control is a robust control technique 
which has many attractive features such as robustness to 
parameter variation and insensitivity to disturbance, fast 
response. But it also has some limitation such as chattering or 
high frequency oscillation in application. It is necessary to 
integrate adaptive control and sliding mode control.  The 
adaptive sliding mode control has the advantages of 
combining the robustness of variable structure methods with 
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the tracking capability of adaptive control strategies. The 
adaptive control with sliding mode compensator is developed 
to reject the disturbance, and to improve the tracking 
performance. Furthermore, a smooth sliding mode controller 
is used to compensate for the nonlinearity and external 
disturbance of system and to increase the control accuracy and 
stability.  The sliding line 0)(ts is defined in the state space 
of errors, define sliding surface

11)( eets                                                        (32)
and  is a positive constant, 1e si tracking error A reaching 
law is a differential equation describing the evolution of the 
distance )(ts  under sliding mode control. The control law is 
designed to satisfy a prescribed reaching law. Gao [10] 
proposed simple reaching law such as 

)sgn(ss                                                            (33)
where 0 , corresponding to a reaching law with constant 
reaching speed . In order to eliminate the control 
discontinuities, a smooth sliding mode control )(asTanh
that can reduce chattering problem is introduced. The term 
with the sign of )(ts in the control law results in the control 
discontinuities which causes chattering problem and may 
excite the high frequency unmodeled dynamics, the sliding 
model control )(asTanh  is to guarantee the system reach 
the sliding line and remain on it.   The surface defined by 

0s  represents the ‘‘sliding surface,’’ so that when the 
dynamics are restricted to this surface, 01e  and 01e  is 
an asymptotically stable equilibrium point. Therefore, when 
the system is restricted to the sliding surface, the control errors 
vanish as t .
 The sliding mode controller Su with the adaptive controller 

pu is proposed as 

SP uuu (34)
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therefore the adaptive controller with sliding mode controller 
is derived as

Tanh(as))(ewu TT *
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where d . The term )(asTanh  is a robust compensator 
and is used to compensate for the nonlinearity of the system 
and to increase the control accuracy and stability. In this 
control approach, 0s  functions as the sliding surface on 
which the system is asymptotic stable, i.e., the control error is 
zero. The robust compensator )(asTanh  is continuously 
differentiable with respect to the control variable s, and it 
generates a smooth control action. Compared with the 
commonly used bang-bang or saturation robust controllers, the 
smooth robust controller has advantages in ensuring both 
smooth control input and the ultimately globally uniform 
stability of the closed-loop system. 

V. SIMULATION RESULTS

       In this section, in order to demonstrate the feasibility of 
the proposed MRAC with sliding mode controller numerical 

simulation for the adaptive control with sliding mode 
compensator is performed using MATLAB and SIMULINK. 
For a flexible cantilevered with a pair of PZT-patch actuator, 
we consider the voltage of the signal sent to the power 
amplifier for the PZT as the input and the sensor output as the 
output. According to section II, finite element model is 
calculated. Specifications of the flexible beam and 
piezoceramic properties on the flexible beam are given in 
Table I and Table II. The individual stiffness and mass 
matrices for each element is individually computed and finally 
the global stiffness and mass matrices were constructed. The 
fundamental frequency of the flexible beam was found to be 
about 1.6 Hz by experiment.  Through finite element analysis 
for the flexible beam, the first three modes table calculated 
from Matlab program is presented in Table III.  
       From the FEM modal analysis, there are variations of 
natural frequencies of beams with the bonded actuators and 
sensor. Numerical results show that the bonded actuators and 
sensors lead to increase in natural frequencies.  The dynamic 
effects of mass and stiffness of the piezoelectric patch are 
considered in the model procedure.  
In the MRAC controller used in the vibration suppression of 
flexible beam, we make use of the control law and adaptive 
law, choose filter item 10p  and 2)( ss , then get the 
controller and adaptive law as follows: 
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The adaptive law is e1  , 0T  is adaptive 
gain,

],,,[ 4321  and T
p r],y,w,[ww 21 . Starting

with T)( ]2,5,2,4[0 , adaptive law gain 
}10,10,10,18{diag . The reference model is chosen 

as
101

1
2 ss

ym  . The parameters of the sliding mode 

term )(asTanh  are 4 , 5.0 , 5.0a . The 
disturbance noise is band-limited white noise with noise 
power 0.05, 2  in the presence of transient natural 
frequency excitation, 4  in the presence of persistent 
natural frequency excitation, and chip signal excitation. 

       Fig 2 shows the control results when the natural 
frequency excitation is applied during the first 5s and the 
control action begin at 5s, and it compares the non-adaptive 
and adaptive control with and without sliding mode 
compensator under transient frequency excitation. Fig 3 
compares non-adaptive and adaptive control with and without 
sliding mode compensator under transient frequency 
excitation in the presence of disturbance noise.  Fig. 4 shows 
the control results with persistent natural frequency excitation 
when the natural frequency excitation is applied during the 
30s and the control action begins at 5s, it compared the non-
adaptive and adaptive control with and without sliding mode 
compensator under persistent frequency excitation. Fig 5 
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compares non-adaptive and adaptive control with and without 
sliding mode compensator under persistent frequency 
excitation in the presence of disturbance noise.  It is observed 
that adaptive control with sliding mode compensator has 
better results than adaptive control without sliding mode 
compensator no matter whether excitations are applied 
transiently and continuously.   

       The important criterion to evaluate the robustness of a 
controller is how the controller deals with unexpected changes 
in the system. A simulation is conducted that uses a sinusoidal 
disturbance whose frequency changes in time, for example, a 
linear chip signal. Fig 6 shows the control results when the 
chip signal disturbance is applied continuously and the control 
action begin at 0s, and it compares the non-adaptive and 
adaptive control with and without sliding mode compensator. 
The linear chip signal is the sine wave whose frequency varies 
linearly with time, in this simulation, the chip signal is linearly 
changing from 0.1 Hz to 4 Hz during 40s time period. The 
simulation results show that the adaptive control with sliding 
mode compensator can deal with the unexpected changes in 
the system better than adaptive control without sliding mode 
compensator. 

TABLE I SPECIFICATION OF THE FLEXIBLE BEAM

PROPERTY SYMBOL VALUE 

Young's Modulus (N/m 2 ) E 7.03E10

Beam width (m) W 0.0531

Beam density (kg/m 3 ) 2690

Beam thickness (m) T 1x10-03

Beam length (m) L 0.826

TABLE II PIEZOCERAMIC PROPERTIES OF THE FLEXIBLE BEAM

PROPERTY SYMBOL VALUE 

Piezo Modulus (N/m 2  ) pE 6.3E10

Piezo density (kg/m) p 7.5x103

Piezo lateral strain coefficient 
(m/V) 31d 1.8x10-10

Piezo permitivity (N/V 2 ) 3 1.5x10-08

Piezo thickness (m) pt 2.53x10-03

Piezo actuator width (m) paW 33.274x10-03

Piezo sensor width (m) psW 7x10-03

Piezo actuator width (m) paL 46x10-03

Piezo actuator width (m) psL 14x10-03

TABLE II.COMPARISON OF FIRST THREE MODES OF THE FLEXIBLE
BEAM

Without actuators and 
sensors

With actuators and 
sensorsMode

Rad/sec Hz Rad/sec Hz 
1 9.5663 1.5225 10.266 1.6339 
2 60.085 9.5286 63.415 10.093 
3 170.17 27.083 176.96 28.164 
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VI. CONCLUSION

This paper investigates the feasibility of adaptive output 
feedback control with sliding mode control for the vibration 
suppression of a flexible cantilever beam model.  Model 
reference adaptive controller whose parameters are updated 
directly from the Lyapunov-based adaptive laws is described 
in detail and the adaptive law is developed. A smooth sliding 
mode controller is used to compensate for the nonlinearity of 
system and to increase the control accuracy and stability. 
Numerical simulations show that the adaptive control with 
sliding mode control has satisfactory performance and 
robustness in vibration suppression of flexible cantilever beam 
compared with adaptive control without sliding mode control.  
The simulation results clearly demonstrate the adaptive 
control with sliding mode compensator successfully 
suppresses the vibration and therefore is superior to standard 
adaptive control without sliding mode compensator.  
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