

Module
8

Industrial Embedded and
Communication Systems

Version 2 EE IIT, Kharagpur 1

Lesson
37

Real-Time Operating
Systems: Introduction and

Process Management
Version 2 EE IIT, Kharagpur 2

Instructional Objectives

After learning the lesson the student should be able to:

A. Describe the major functions of an Operating System

B. Define multi-tasking and describe its advantages

C. Describe the task states and transitions in the execution life cycle under a multi-tasking
OS

D. Define the concept of preemptive priority scheduling

E. Describe common multi-tasking architectures of RTOS.

F. Describe the classification of computing tasks in terms of their timing constraints

Introduction

Embedded Computing Applications exist in a spectacular range of size and complexity for areas
such as home automation to cell phones, automobiles and industrial controllers. Most of these
applications demand such functionality, performance and reliability from the software that
simple and direct assembly language programming of the processors is clearly ruled out.
Moreover, as a distinguishing feature from general purpose computing, a large part of the
computation is “real-time” or time constrained and also reactive or “external event driven” since
such systems generally interface strongly with the external environment through a variety of
devices. Thus, an operating system is generally used. An operating system facilitates
development of application program by making available a number of services, which, otherwise
would have to be coded by the application program. The application programs “interface” with
the hardware through a operating system services and functions. It is therefore important
understand the basic features of such operating systems. In this chapter we present the
fundamental concepts of a real-time operating system in a generic context. Most large industrial
controllers employ such operating systems. Before we undertake the discussion, we briefly
review the nature of computation in industrial automation systems.

Nature of IA computation

Computation for industrial automation are typified by the following characteristics:

• The computation is reactive in nature, that is, the computation is carried out with respect

to real-world physical signals and events. Therefore industrial computers must have
extensive input-output subsystems that interface it with physical signals

• In general speed of computation is not very high. This is because dynamics for variables
such as temperature are very slow. For electromechanical systems speed requirement is
higher. However, there processing is often done by dedicated coprocessors.

• The algorithmic complexity of computation is generally not very high, although it is
increasing due to the deployment of sophisticated control and signal processing
algorithms. Therefore general-purpose processors are sufficient, almost in all cases.

Version 2 EE IIT, Kharagpur 3

• A large part of the computational tasks are repetitive or cyclic, that is their executions are
invoked periodically in time. Many of these tasks are also real-time, in the sense that
there are deadlines associated with their execution. When there are a large number of
such tasks to be executed on a single processor, appropriate scheduling strategies are
required. Since the number of tasks is mostly fixed, simple static scheduling policies are
generally adequate.

• Although computational demands are not very high, the computation is critical in nature.
Indeed, the cost ratios of industrial controllers and the plant equipment they control can
well be in excess of one thousand. This requirement is coupled with the fact that such
controllers are often destined to work in harsher industrial environments. Thus, reliability
requirement of industrial control computers are very high. In fact, this is one of the main
reasons that decide the high price of such systems compared to commercial computers of
comparable or even higher data processing capability.

In this lesson the basic features of a Real-Time Operating System (RTOS) are introduced and
motivated from the demands of typical real-time applications. Before the RTOS is discussed the
typical functionalities of a general Operating System (OS) reviewed briefly. While the RTOS has
some distinguishing features, it is also largely similar to general purpose operating systems. The
discussion here is necessarily brief and user oriented, rather than designer oriented. For a detailed
exposition on OS any standard textbook on the subject may be referred to.

Operating Systems (OS) Basics

An Operating System is a collection of programs that provides an interface between application
programs and the computer system (hardware). Its primary function is to provide application
programmers with an abstraction of the system resources, such as memory, input-output and
processor, which enhances the convenience, efficiency and correctness of their use. These
programs or functions within the OS provide various kinds of services to the application
programs. The application programs, in turn, call these programs to avail of such services. Thus
the application programs can view the computer resources as abstract entities, (for example a
block of memory can be used as a named sequential file with the abstract Open, Close, Read,
Write operations) without need for knowing the low level hardware details (such as the addresses
of the memory blocks). To get a better idea of such services provided by the OS, the user may
like to refer to the DOS services for the IBM PC Compatibles.

The natural way to view computation in a typical modern computer system is in the form of a
number of different programs, all of which, apparently, run in parallel. However, very often, all
the programs in the system are executed on a single physical CPU or processor. Each program
runs for a small continuous duration at a time, before it is stopped and another program begins to
execute. If this is done rapidly enough, it appears as if all programs are running simultaneously.
These programs very often perform independent computations, such as the programs executing
in different windows on a PC. In real time systems, most often, such programs cooperate with
each other, by exchanging data and synchronizing each other’s execution, to achieve the overall
functionality and performance of the system.

Version 2 EE IIT, Kharagpur 4

Types of Operating Systems

• Stand-Alone Operating systems
• Network Operating systems
• Embedded Operating Systems

Stand-Alone Operating System

 It is a complete operating system that works on a desktop or notebook computer.
 Examples of stand-alone operating systems are:

• DOS
• Windows 2000 Professional
• Mac OS X

Network Operating System

It is an operating system that provides extensive support for computer networks.
A network operating system typically resides on a server. Examples of a network
operating system are:

• Windows 2000 Server
• Unix
• Linux
• Solaris

Embedded Operating System

 You can find this operating system on handheld computers and small devices, it
 resides on a ROM chip. Examples of embedded operating systems are:

• Windows CE
• Pocket PC 2002
• Palm OS

The above classification is based on the computing hardware environment towards which
the OS is targetted. All three types can be either of a real-time or a non-real-time type. For
example, VxWorks is an RTOS of the first category, RT-Linux and ARTS are of the
second category and Windows CE of the third category.

 Point to Ponder 1

A. What are the factors on which the execution time of a program depends on?

B. While a task is executing, is the CPU continuously busy?

C. Suppose there are two mutually independent programs A and B. If only program A (B)
executes on the processor P, it takes tA (tB) units of time. If these programs are fired
simultaneously and run under multi-programming, neglecting time related to program
switching, would the execution time for both programs taken together be greater than,
equal to or less than (t

B

A + tB

B)?

Version 2 EE IIT, Kharagpur 5

Real-Time Operating Systems

A Real-Time OS (RTOS) is an OS with special features that make it suitable for building real-
time computing applications also referred to as Real-Time Systems (RTS). An RTS is a
(computing) system where correctness of computing depends not only on the correctness of the
logical result of the computation, but also on the result delivery time. An RTS is expected to
respond in a timely, predictable way to unpredictable external stimuli.

Real-time systems can be categorized as Hard or Soft. For a Hard RTS, the system is taken to
have failed if a computing deadline is not met. In a Soft RTS, a limited extent of failure in
meeting deadlines results in degraded performance of the system and not catastrophic failure.
The correctness and performance of an RTS is therefore not measured in terms of parameters
such as, average number of transactions per second as in transactional systems such as databases.

A Good RTOS is one that enables bounded (predictable) behavior under all system load
scenarios. Note however, that the RTOS, by itself cannot guarantee system correctness, but only
is an enabling technology. That is, it provides the application programmer with facilities using
which a correct application can be built. Speed, although important for meeting the overall
requirements, does not by itself meet the requirements for an RTOS.

Programs, Processes, Tasks and Threads

The above four terms are often found in literature on OS in similar contexts. All of them
refer to a unit of computation. A program is a general term for a unit of computation and
is typically used in the context of programming. A process refers to a program in
execution. A process is an independently executable unit handled by an operating system.
Sometimes, to ensure better utilisation of computational resources, a process is further
broken up into threads. Threads are sometimes referred to as lightweight processes
because many threads can be run in parallel, that is, one at a time, for each process,
without incurring significant additional overheads. A task is a generic term, which, refers
to an independently schedulable unit of computation, and is used typically in the context
of scheduling of computation on the processor. It may refer either to a process or a thread.

Multitasking

A multitasking environment allows applications to be constructed as a set of independent tasks,
each with a separate thread of execution and its own set of system resources. The inter-task
communication facilities allow these tasks to synchronize and coordinate their activity.
Multitasking provides the fundamental mechanism for an application to control and react to
multiple, discrete real-world events and is therefore essential for many real-time applications.
Multitasking creates the appearance of many threads of execution running concurrently when, in
fact, the kernel interleaves their execution on the basis of a scheduling algorithm. This also leads
to efficient utilisation of the CPU time and is essential for many embedded applications where
processors are limited in computing speed due to cost, power, silicon area and other constraints.
In a multi-tasking operating system it is assumed that the various tasks are to cooperate to serve
the requirements of the overall system. Co-operation will require that the tasks communicate
with each other and share common data in an orderly an disciplined manner, without creating

Version 2 EE IIT, Kharagpur 6

undue contention and deadlocks. The way in which tasks communicate and share data is to be
regulated such that communication or shared data access error is prevented and data, which is
private to a task, is protected. Further, tasks may be dynamically created and terminated by other
tasks, as and when needed. To realise such a system, the following major functions are to be
carried out.

A. Process Management

• interrupt handling

• task scheduling and dispatch

• create/delete, suspend/resume task

• manage scheduling information

– priority, scheduling policy, etc

B. Interprocess Communication and Synchronization

• Code, data and device sharing

• Synchronization, coordination and data exchange mechanisms

• Deadlock and Livelock detection

C. Memory Management

• dynamic memory allocation

• memory locking

• Services for file creation, deletion, reposition and protection

D. Input/Output Management

• Handles request and release functions and read, write functions for a variety of
peripherals

The following are important requirements that an OS must meet to be considered an RTOS in the
contemporary sense.

A. The operating system must be multithreaded and preemptive. e.g. handle multiple
threads and be able to preempt tasks if necessary.

B. The OS must support priority of tasks and threads.

C. A system of priority inheritance must exist. Priority inheritance is a mechanism to
ensure that lower priority tasks cannot obstruct the execution of higher priority tasks.

D. The OS must support various types of thread/task synchronization mechanisms.

E. For predictable response :
a. The time for every system function call to execute should be predictable and
independent of the number of objects in the system.
b. Non preemptable portions of kernel functions necessary for interprocess
 synchronization and communication are highly optimized, short and deterministic

Version 2 EE IIT, Kharagpur 7

c. Non-preemptable portions of the interrupt handler routines are kept small and
 deterministic
d. Interrupt handlers are scheduled and executed at appropriate priority
e. The maximum time during which interrupts are masked by the OS and by device
 drivers must be known.
f. The maximum time that device drivers use to process an interrupt, and specific
 IRQ information relating to those device drivers, must be known.
g. The interrupt latency (the time from interrupt to task run) must be predictable and
 compatible with application requirements

F. For fast response:
a. Run-time overhead is decreased by reducing the unnecessary context switch.
b. Important timings such as context switch time, interrupt latency, semaphore
 get/release latency must be minimum

Point to Ponder: 2

A. What are possible reasons for which execution time for a can be unpredictable?

B. Why preemptive multi-tasking is such an important requirement for an RTOS?

C. Suppose there are two mutually independent tasks A and B. Let B be the higher priority
task. If only task A (B) executes on the processor P, it takes tA (tB) units of time. I

B f
these tasks are run under multi-tasking, neglecting time related to task switching, can
the execution time for task A be less than (tA + tB

B) ?

Process Management

On a computer system with only one processor, only one task can run at any given time, hence
the other tasks must be in some state other than running. The number of other states, the names
given to those states and the transition paths between the different states vary with the operating
system. A typical state diagram is given in Figure 4 and the various states are described below.

Task States

♦ Running: This is the task which has control of the CPU. It will normally be the task
which has the highest current priority of the tasks which are ready to run.

♦ Ready: There may be several tasks in this state. The attributes of the task and the
resources required to run it must be available for it to be placed in the 'ready' state.

♦ Waiting: The execution of tasks placed in this state has been suspended because the
task requires some resources which is not available or because the task is
waiting for some signal from the plant, e.g., input from the analog-to-digital
converter, or the task is waiting for the elapse of time.

♦ New: The operating system is aware of the existence of this task, but the task has not
been allocated a priority and a context and has not been included into the list of
schedulable tasks.

Version 2 EE IIT, Kharagpur 8

♦ Terminated: The operating system has not as yet been made aware of the existence of
this task, although it may be resident in the memory of the computer.

new

ready running

terminated

I/O or event wait I/O or event completion

admitted exit
interrupt

scheduler dispatch

waiting

Fig. 37.1 The various states a task can be in during its execution life cycle under an
 RTOS Task State Transitions

When a task is “spawned”, either by the operating system, or another task, it is to be created,
which involves loading it into the memory, creating and updating certain OS data structures such
as the Task Control Block, necessary for running the task within the multi-tasking environment.
During such times the task is in the new state. Once these are over, it enters the ready state where
it waits. At this time it is within the view of the scheduler and is considered for execution
according to the scheduling policy. A task is made to enter the running state from the ready state
by the operating system dispatcher when the scheduler determines the task to be the one to be
run according to its scheduling policy. While the task is running, it may execute a normal or
abnormal exit according to the program logic, in which case it enters the terminated state and
then removed from the view of the OS. Software or hardware interrupts may also occur while the
task is running. In such a case, depending on the priority of the interrupt, the current task may be
transferred to the ready state and wait for its next time allocation by the scheduler. Finally, a task
may need to wait at times during its course of execution, either due to requirements of
synchronization with other tasks or for completion of some service such as I/O that it has
requested for. During such a time it is in the waiting state. Once the synchronization requirement
is fulfilled, or the requested service is completed, it is returned to the ready state to again wait its
turn to be scheduled.

Version 2 EE IIT, Kharagpur 9

 Point to Ponder: 3

A. What are the situations under which a running task can go to the ready state?

B. What are the situations under which a running task can go to the waiting state?

C. Suppose there are two mutually independent tasks A and B, which are invoked
periodically with periods with B as the higher priority task. If only task A (B) executes
on the processor P, it takes tA (tB) units of time. The periods for A and B are T

B A and
TB

B, respectively, and tA T≤ A and tB B ≤ TBB. If these tasks are to be run under multi-

tasking with negligible task switching time, state any one condition under which task
preemption would be essential for the task dead lines to be met.

D. In the above case state a condition under which even with preemption, task deadlines
cannot be met.

Task Control Functions

RTOSs provide functions to spawn, initialise and activate new tasks. They provide functions to
gather information on existing tasks in the system, for task naming, checking of the state of a
given task, setting options for task execution such as use of co-processor, specific memory
models, as well as task deletion. Deletion often requires special precautions, especially with
respect to semaphores, for shared memory tasks.

Task Context

Whenever a task is switched its execution context, represented by the contents of the program
counter, stack and registers, is saved by the operating system into a special data structure called
a task control block so that the task can be resumed the next time it is scheduled. Similarly the
context has to be restored from the task control block when the task state is set to running. The
information related to a task stored in the TCB is shown below.

Version 2 EE IIT, Kharagpur 10

• Parent and Child Tasks

• Synchronization Information : semaphores, pipes, mailboxes, message queues, file
handles etc.

• Scheduling Information : priority level, relative deadline, period, state

• Task Parameters : includes task type, event list

• Task Context: includes the task’s program counter(PC) , the CPU registers and
(optionally) floating-point registers, a stack for dynamic variables and function
calls, the stack pointer (SP), I/O device assignments, a delay timer, a time-slice
timer and kernel control structures

• Address Space : the address ranges of the data and code blocks of the task loaded in
memory including statically and dynamically allocated blocks

• Task ID: the unique identifier for a task

Task Control Block

Task Scheduling and Dispatch

The basic purpose of task scheduling and dispatch in a real-time multi-tasking OS is to ensure
that each task gets access to the CPU and other system resources in a manner that is necessary
for successful and timely completion of all computation in the system. Secondly, it is desired that
this is done efficiently from the point of view of resource utilisation as well as with correct
synchronisation and protection of data and code for individual tasks against incorrect
interference. Various task scheduling and dispatch models are in use to achieve the above. The
appropriateness of a particular model depends on the application features. The major main task
scheduling and dispatch models are described below.

Cyclic Executive

This is the simplest of the models in which all the computing tasks are required to be run
periodically in cycles. The computing sequence is static and therefore, a monolithic program
called the Cyclic Executive runs the tasks in the required order in a loop. At times the execution
sequence may also be determined in accordance with models such as an FSM. The execution
sequences and the times allocated to each task are determined a priori and are not expected to
vary significantly at run time. Such systems are often employed for controllers of industrial
machines such as Programmable Logic Controllers that perform fixed set of tasks in fixed orders
defined by the user. These systems have the advantage of being simple to develop and configure
as well as faster than some of the more complex systems since task context switching is faster
and less frequent. They are however suitable for static computing environments only and are
custom developed using low level programming languages for specific hardware platforms.

Coroutines

In this model of cooperative multitasking the set of tasks are distributed over a set of processes,
called coroutines. These tasks mutually exchange program control rather than relinquish it to the

Version 2 EE IIT, Kharagpur 11

operating system. Thus each task transfers control to one of the others after saving its data and
control state. Note that the responsibility of scheduling, that is deciding which task gets control
of the processor at a given time is left to the programmer, rather than the operating system. The
task which is transferring control is often left in the waiting or blocked state. This model has now
been adapted to a different form in Multithreading.

Interrupts

In many cases task scheduling and dispatch needs to be made responsive to external signals or
timing signals. In other cases running tasks may not be assumed to be transferring control to the
dispatcher on their own. In such cases the facility of interrupts provided on all processors can be
used for task switching. The various tasks in the system can be switched either by hardware or
software interrupts. The interrupt handling routine would then transfer control to the task
dispatcher. Interrupts through hardware may occur periodically, such as from a clock, or
asynchronously by external devices. Interrupts can also occur by execution of special software
instructions written in the code, or due to processing exceptions such as divide by zero errors.
Interrupt-only systems are special case of foreground/background systems, described below,
which are widely used in embedded systems.

Foreground / Background

Typically, embedded and real-time applications involve a set of tasks, some of which are
periodic and must be finished within deadlines. Others may be sporadic and may not have such
deadlines associated with them. Foreground/background systems are common and simple
solutions for such applications. Such systems involve a set of interrupt driven or real-time tasks
called the foreground and a collection of non-interrupt driven tasks called the background. The
foreground tasks run according to some real-time priority scheduling policy. The background
tasks are preemptable by any foreground task.

Real Time Operating Systems

This is the most complex model for real-time multi-tasking. The major features that distinguish it
from the other ones described above are the following.

1. The explicit implementation of a scheduling policy in the form of a scheduler module.
The scheduler is itself a task which executes every time an internal or external interrupt
occurs and computes the decision on making state transitions for every application task in
the system that has been spawned and has not yet been terminated. It computes this
decision based on the current priority level of the tasks, the availability of the various
resources of the system etc. The scheduler also computes the current priority levels of the
tasks based on various factors such as deadlines, computational dependencies, waiting
times etc.

2. Based on the decisions of the scheduler, the dispatcher actually effects the state transition
of the tasks by
a. saving the computational state or context of the currently executing task from the

hardware environment.
b. enabling the next task to run by loading the process context into the hardware

environment.

Version 2 EE IIT, Kharagpur 12

It is also the responsibility of the dispatcher to make the short-term decisions in response
to, e.g., interrupts from an input/output device or from the real-time clock.

The dispatcher/scheduler has two entry conditions:

1. The real-time clock interrupt and any interrupt which signals the completion of an
input/output request

2. A task suspension due to a task delaying, completing or requesting an input/output
transfer.

In response to the first condition the scheduler searches for work starting with the highest
priority task and checking each task in priority order. Thus if tasks with a high repetition rate
are given a high priority they will be treated as if they were clock-level tasks, i.e., they will be
run first during each system clock period. In response to the second condition a search for
work is started at the task with the next lowest priority to the task which has just been running.
There cannot be another higher priority task ready to run since a higher priority task becoming
ready always preempts a lower priority running task.

System Services

API calls
task management

memory management
I/O management

I/O,
interrupt

initiali-
zation

task scheduler/
dispatcher

application
tasks

external interrupts
clock/timer interrupts

i/o interrupts

kernel

Fig. 37.2 Structure of an RTOS Kernel

The typical structure of an RTOS kernel showing the interaction between the System and the
Application tasks.

Version 2 EE IIT, Kharagpur 13

Point to Ponder: 4

A. In what ways threads are similar to coroutines? In what ways are they different?

B. Under what situations is a cyclic executive adequate? When is it not and why not?

C. In what ways are interrupt service routines different from other tasks?

D. Can you give an example of a practical embedded application, for which an
Foreground/ Background model of multi-tasking is adequate?

E. Under what situations is an full-featured RTOS an appropriate choice? Can you
illustrate your answer with the example of a practical embedded application?

Priority Levels in a typical Real-Time Operating System

To be able to ensure that response to every event is generated by executing tasks within specific
deadlines, it is essential to allocate the CPU and other computational resources to various tasks in
accordance with their priorities. The priority of a process may be fixed or static. It may be
calculated based on their computing time requirements, frequency of invocations or deadlines.
However, it has been established that policies that allow task priorities to be adjusted
dynamically are more efficient. The priority will depend on how quickly a task will have to
respond to a particular event. An event may be some activity of the process or may be the
elapsing of a specified amount of time. The set of tasks can often be categorised into three broad
levels of priority as shown below. Tasks belonging to the same category are typically scheduled
and dispatched using similar mechanisms.
Interrupt Level: Tasks at this level require very fast response measured in milliseconds and
occur very frequently. There is no scheduler at this level, since immediate execution follows an
interrupt. Examples of this task include the real-time clock task. Obviously, to meet the deadlines
of the other tasks in the system, the context switching and processing time requirements for these
tasks are to be kept at the bare minimum level and must be highly predictable to make the whole
system behaviour predictable. To ensure the former, often, all Interrupt Service Routines (ISRs)
run in special common and fixed contexts, such as common stacks. To ensure the latter the
interrupt service routines are sometimes divided into two parts. The first part executes
immediately, spawns a new task for the remaining processing and returns to kernel. This new
task gets executed as per the scheduling policy in course of time. The price to pay for fast
execution of ISRs is often several constraints on the programming of ISRs which lacks many
flexibilities compared to the programming of tasks. Priorities among tasks at this level are
generally ensured through the hardware and software interrupt priority management system of
the processor. There may also exist interrupt controllers that masks interrupts of lower priority in
the presence of a higher priority one. The system clock and watchdog timers associated with
them are tasks that execute at interrupt level. The dispatcher for the next level of priority is also a
task at this level. The frequency of execution of this task depends on the frequency or period of
the highest priority clock-level task.

Hard Real-Time Level: At this level are the tasks which are periodic, such as the sampling
and control tasks, and tasks which require accurate timing. The scheduling of these tasks is
carried out based on the real-time system clock. A system clock device consists of a counter, a
timer queue and an interrupt handler. Content of counter gives the current time, timer queue has

Version 2 EE IIT, Kharagpur 14

pending timers associated with the clock device. Each system clock interrupt is known as a tick
and represents the smallest time interval known to the system. Since most programs in real-time
applications make use of time, virtual software clocks and delays can also be created by tasks
and associated with the system clock device. The system clock device raises interrupts
periodically and the kernel updates the software clock according to current time. Also every few
clock cycles a new task gets dispatched according to the scheduling policy adopted. The lowest
priority task at this level is the base level scheduler. Thus if at a clock level interrupt, the clock
level scheduler finds no request for higher priority clock level tasks pending, the base level
scheduler is dispatched.

Soft/Non-Real Time Level: Tasks at this level are of soft or non-real-time in that they either
have no deadlines to meet or are allowed a wide margin of error in their timing. These are
therefore taken to be of low priority and executed only when no request for a higher priority task
is pending. Tasks at this level may be allocated priorities or may all run at a single priority level
- that of the base level scheduler in a round robin fashion. These tasks are typically initiated on
demand rather that at some predetermined time interval. The demand may be a user input from a
keypad, some process event such as the arrival of a packet or some particular requirement of the
data being processed. Note that, since the base level scheduler is the lowest priority clock level
task, the priorities of all base level tasks are lower than those at clock levels.

Each of the above priority levels can support multiple task priorities. For an RTOS to be
compliant with the RT-POSIX standard, number of priority levels supported must be at least 32.
Among commercial RTOS, the priority levels supported can be as low as 8 for Windows CE or
256 for VxWorks. For scheduling of equal priority threads, FIFO or Round-Robin policy is
generally applied. Thread priorities be changed at run-time.

Task Scheduling Management

Advanced multi-tasking RTOSs mostly use preemptive priority scheduling. These support more
than one scheduling policy and often allow the user to set parameters associated with such
policies, such as the time-slice in Round Robin scheduling where each task in the task queue is
scheduled for up to a maximum time, set by the time-slice parameter, in a Round Robin manner.
Task priorities can also be set. Hundred of priority levels are commonly available for scheduling.
Specific tasks can also be indicated to be nonpremeptive.

Point to Ponder: 5

A. Give example of hard, soft and non-real-time computing tasks. In what ways are they

different?

B. Can interrupt level priorities be seen as very high priority levels?

C. What happens if the user sets priorities in a manner that deadline would be violated
for other tasks?

Lesson Summary

In this lesson, we have dealt with the following topics.

Version 2 EE IIT, Kharagpur 15

A. Basic Purpose of an Operating System

B. The features that characterise a real-time operating system

C. The major concepts involved in the Process Management function of the RTOS
a. Task Dispatching
b. Preemptive priority scheduling

D. Basic Styles of implementing the Process Management in RTOS’s of varying
complexities

Version 2 EE IIT, Kharagpur 16

Answers, Remarks and Hints to Points to Ponder

Point to Ponder: 1

A. What are the factors on which the execution time of a task depends on?

Ans: The execution time of a task can be divided into two types of activities, namely, CPU
time and I/O time. In a multi-tasking operating system a third kind of time is added to this,
namely the time spent by the task in waiting for the resources needed, that is CPU, or I/O.
This may depend on a variety of factors, such as the other tasks running in the environment,
priority, scheduling policies etc.

B. While a task is executing, is the CPU continuously busy?

Ans: The CPU is always doing something except during the times when it is fetching
address or data from memory or devices. But since it may require sometime for the device to
send the data, during that time, the CPU may do tasks other than the one for which it
requested the device. In this sense the CPU may not be continuously busy.

C. Suppose there are two mutually independent tasks A and B. If only task A (B) executes on
 the processor P, it takes tA (tB) units of time. If these tasks are fired simultaneously and
 run under multi-tasking, neglecting time related to task switching, would the execution
 time for both tasks taken together be greater than, equal to or less than (t

B

A + tBB) ?

Ans: That depends on the scheduling policy. If the policy is non-preemptive, it will take time
equal to (tA + tB). If it is preemptive, however, it is expected to take less time than (tB A + tBB).

Point to Ponder: 2

A. What are possible reasons for which execution time for a task can be unpredictable?

Ans: Basically due to variations in its execution environment. This includes factors such as
the other tasks which are executing at the same time, there priorities related to the task in
question, the nature and frequency of interrupts coming from the environment etc. Note that,
even apart from these environmental factors, the execution time of a task depends on the
input data set used for the run. However, this cannot be termed “unpredictable”.

B. Why preemptive multi-tasking is such an important requirement for an RTOS?

Ans: The first reason is that, without it, the concept of priority cannot be implemented
properly. Thus without preemption, a task, that may have started when no other higher
priority task was present, can block such higher priority tasks for long times, thus violating
the principle of priority scheduling. Secondly, with a given computing speed the CPU
utilization that can be realised with preemption cannot be utilised without it. Even if limited
preemption, (namely that, only a task waiting for I/O is preempted) is used, a given set of
tasks that is schedulable with respect to their deadlines under preemptive scheduling, may not
be so without premption. It is for these reasons that it is an indispensable feature for an
RTOS.

Version 2 EE IIT, Kharagpur 17

C. Suppose there are two mutually independent tasks A and B. Let B be the higher priority
 task. If only task A (B) executes on the processor P, it takes tA (tB) units of time. If these
 tasks are run under multi-tasking, neglecting time related to task switching, can the
 execution time for task A be less than (t

B

A + tBB) ?

Ans: Yes, because, while task B is waiting for I/O, it would be removed to a waiting queue
and task A would be scheduled till the time the interrupt for I/O completion is received and
task B is put into a ready queue.

Point to Ponder: 3

A. What are the situations under which a running task can go to the ready state?

Ans: From the new state, after it is initialised. From the waiting or blocked state, after I/O
completion. From the running state, after its allocated time-slice is spent.

B. What are the situations under which a running task can go to the waiting state?

Ans: If it is blocked on I/O or due to synchronization requirement with another task.

C. Suppose there are two mutually independent tasks A and B, which are invoked
 periodically with periods TA (TB). If only task A (B) executes on the processor P, it
 takes t

B

A (tBB) units of time. Naturally, tA ≤ TA and tB B ≤ TBB. If these tasks are to be run
 under multi-tasking with negligible task switching time, state any one condition under
 which task preemption would be essential for the task dead lines to be met.

Ans: tB ≤ TB A.

D. In the above case, let B be the higher priority task which can preempt the execution of
 task A whenever it is ready. State a condition under which even with preemption, task
 deadlines cannot be met.

Ans: B B A/t t + t .Α ΑΤ ≥ ⎡Τ ⎤

Point to Ponder: 4

A. State one factor in respect of which, threads are similar to coroutines. State one factor in
 respect of which they are different.

Ans: In the sense that they do not involve process management overheads on the OS, such as
creation and management of TCB, run-time synchronization management etc. They are
different in the sense that, there is RTOS support for thread scheduling. Co-routines are
entirely managed by the programmer.

B. State one situation under which a cyclic executive is adequate? State one situation under
 which it is not and why not?

Version 2 EE IIT, Kharagpur 18

Ans: When task execution times are predictable and the tasks can be run in a given fixed
order without violating their deadlines, a cyclic executive is adequate. If the above conditions
are not met, for example, if tasks are invoked by the environment asynchronously, a cyclic
executive is not the choice.

C. State one way in which are interrupt service routines different from other tasks?

Ans: They are different in the sense that they receive an immediate response from the
processor, if they are sensed (i.e. they are not masked). This is by the hardware design of the
processor. Tasks on the other hand receive response from the CPU only when they are
appropriate to be run under the scheduling policy.

D. Can you give an example of a practical embedded application, for which an Foreground /
 Background model of multi-tasking is adequate?

Ans: Consider an embedded CNC machine controller. The tasks in the machine can typically
be divided into two categories. In the first category are real-time supervisory control tasks
that generate the references for the two dimensional motion of the job as well as for the
spindle speed. These references are generated by interpolating the cutting profiles
programmed in the machine. On the other hand there are other tasks which are soft/non-real
time, such as servicing the operator input console and updating the display. We do not need a
full features RTOS here since the nature of tasks and the task loading level is fairly
deterministic and predictable.

E. Under what situations is a full-featured RTOS an appropriate choice? Can you illustrate
 your answer with the example of a practical embedded application?

Ans: A full featured RTOS is the choice for a complex embedded system where the task
loading can vary a lot and can consist of hard real-time tasks of various periods and
deadlines. A typical application area is avionics, such as, say, for a fighter aircraft. The task
loading levels can vary widely depending on mission profiles as well as emergency
situations. Many of these tasks are mission critical. Also the expertise level of people
building these is very high and therefore the complexity of such systems can be handled.

Point to Ponder: 5

A. Give example of hard, soft and non-real-time computing tasks. In what ways are they
 different?

Ans: Consider a digital camera. Among the various tasks that are performed by the
embedded processor, the shutter control functions which essentially compute the necessary
exposure based on the light conditions and opens and closes the shutter is a hard real-time
task. If the task does not execute in time, the exposure would change. On the other hand, the
task that displays the picture on the display, as one reviews the pictures already taken, is a
non-real-time task, because there is no fixed deadline for the task. Note that this task also
must execute reasonably fast (otherwise the camera would not sell). On the other hand, the
auto-focus task, on such a camera which allows one to zoom on a target may be classified as
soft-real-time because if the camera does not focus exactly before the shutter is pressed, the

Version 2 EE IIT, Kharagpur 19

performance of the camera would degrade in terms of photographic quality in some cases.
Thus, the categorisation of the task among the three classes is actually intimately related to
the criteria of performance that is decided for the system.

B. Can interrupt level priorities be seen as a task at real-time level with very high priority?

Ans: Interrupts differ from high priority real-time tasks, although in many cases a part of an
interrupt service routine may actually be spawned as a real-time high priority task. Firstly,
the interrupt response is built in into the hardware, whether it is generated through a
hardware pin or a software instruction, and is automatic, once the interrupt is sensed. It is not
computed using a scheduling policy as is the case for an RT task. Thus an interrupt does not
have a deadline associated with it like an RT task. It may or may not be periodic.

C. What happens if the user sets priorities in a manner that deadline would be violated for
 other tasks?

Ans: RT systems generally do not admit of “users” who can set priorities of tasks at run-
time. However, an application programmer can write code that spawns new tasks at specified
priorities. If these are not set properly deadlines would indeed be failed and the system would
be considered to have been implemented according to specifications. In fact, it is for this
reasons that embedded systems are tested extensively to ascertain that the all deadlines can
be met under all kinds of task scenarios.

Version 2 EE IIT, Kharagpur 20

Aayisha
Typewritten Text
Source: http://www.nptel.ac.in/courses/Webcourse-contents/IIT%20Kharagpur/Industrial%20Automation%20control/pdf/L-37(SM)%20(IA&C)%20((EE)NPTEL).pdf

	Industrial Embedded and Communication Systems
	Real-Time Operating Systems: Introduction and Process Management
	Instructional Objectives
	Introduction
	Nature of IA computation
	Operating Systems (OS) Basics
	Types of Operating Systems
	Stand-Alone Operating System
	Network Operating System
	Embedded Operating System
	Point to Ponder 1
	Real-Time Operating Systems
	Programs, Processes, Tasks and Threads
	Multitasking
	Point to Ponder: 2
	Process Management
	Task States
	Point to Ponder: 3
	Task Control Functions
	Task Context
	Task Control Block
	Task Scheduling and Dispatch
	Cyclic Executive
	Coroutines
	Interrupts
	Foreground / Background
	Real Time Operating Systems
	Point to Ponder: 4
	Priority Levels in a typical Real-Time Operating System
	Task Scheduling Management
	Point to Ponder: 5
	Lesson Summary
	Answers, Remarks and Hints to Points to Ponder
	Point to Ponder: 1
	Point to Ponder: 2
	Point to Ponder: 3
	Point to Ponder: 4
	Point to Ponder: 5

