
Quantum Mechanics_ quantum state 

 
In quantum physics, quantum state refers to the state of a quantum system. A quantum 

state is given as a vector in a Hilbert space, called the state vector. For example, when 

dealing with the energy spectrum of the electron in a hydrogen atom, the relevant state 

vector is identified by the principal quantum number . For a more complicated case, 

consider Bohm's formulation of theEPR experiment, where the state vector 

 

 

involves Superposition of joint spin states for two particles.[1]:47–48 

More generally, a quantum state can be either pure ormixed. The above example is pure. 

Mathematically, a pure quantum state is represented by a state vector in aHilbert 

space over complex numbers, which is a generalization of our more usual three-

dimensional space.[2]:93–96 If this Hilbert space is represented as afunction space, then its 

elements are called wave functions. 

 

A mixed quantum state corresponds to a probabilistic mixture of pure states; however, 

different distributions of pure states can generate equivalent (i.e., physically 

indistinguishable) mixed states. Quantum states, mixed as well as pure, are described by 

so-called density matrices. 

 

For example, if the spin of an electron is measured in any direction, e.g. with a Stern–

Gerlach experiment, there are two possible results: up or down. The Hilbert space for the 

electron's spin is therefore two-dimensional. A pure state here is represented by a two-

dimensional complexvector , with a length of one; that is, with 

 

 

 

where  and  are the absolute values of  and . A mixed state, in this case, is 

a  matrix that isHermitian, positive-definite, and has trace 1. 
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Before a particular Measurement is performed on a quantum system, the theory usually 

gives only aprobability distribution for the outcome, and the form that this distribution 

takes is completely determined by the quantum state and the observable describing the 

measurement. These probability distributions arise for both mixed states and pure states: 

it is impossible in quantum mechanics (unlike classical mechanics) to prepare a state in 

which all properties of the system are fixed and certain. This is exemplified by 

the Uncertainty principle, and reflects a core difference between classicaland quantum 

physics. Even in quantum theory, however, for every observable[dubious – discuss] there are 

states that determine its value exactly.[3] 

Conceptual description 

Pure states 

 

 

Probability densities for the electron of a hydrogen atom in different quantum states. 

In the mathematical formulation of quantum mechanics, pure quantum states correspond 

to vectors in a Hilbert space, while each observable quantity (such as the energy or 

momentum of a particle) is associated with a mathematicaloperator. The operator serves as 
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a linear function which acts on the states of the system. The eigenvalues of the operator 

correspond to the possible values of the observable, i.e. it is possible to observe a particle 

with a momentum of 1 kg⋅m/s if and only if one of the eigenvalues of the momentum 

operator is 1 kg⋅m/s. The corresponding eigenvector (which physicists call an "eigenstate") 

with eigenvalue 1 kg⋅m/s would be a quantum state with a definite, well-defined value of 

momentum of 1 kg⋅m/s, with no quantum uncertainty. If its momentum were measured, the 

result is guaranteed to be 1 kg⋅m/s. 

On the other hand, a system in a linear combination of multiple different 

eigenstates does in general have quantum uncertainty. We can represent this linear 

combination of eigenstates as: 

. 

The coefficient which corresponds to a particular state in the linear combination is complex 

thus allowing interference effects between states. The coefficients are time dependent. 

How a quantum system changes in time is governed by the time evolution operator. The 

symbols "|" and "⟩"[4] surrounding the  are part of Bra–ket notation. 

Statistical mixtures of states are separate from a linear combination. A statistical mixture 

of states occurs with a statistical ensemble of independent systems. Statistical mixtures 

represent the degree of knowledge whilst the uncertainty within quantum mechanics is 

fundamental. Mathematically a statistical mixture is not a combination of complex 

coefficients but by a combination of probabilities of different states .  represents the 

probability of a randomly selected system being in the state . Unlike the linear 

combination case each system is in a definite eigenstate.[5][6] 

In general we must understand the expectation value  of an observable A as a 

statistical mean. It is this mean and the distribution of probabilities that is predicted by 

physical theories. 

There is no state which is simultaneously an eigenstate for all observables. For example, 

we cannot prepare a state such that both the position measurement Q(t) and the 

momentum measurement P(t) (at the same time t) are known exactly; at least one of them 

will have a range of possible values.[a] This is the content of theHeisenberg uncertainty 

relation. 

Moreover, in contrast to classical mechanics, it is unavoidable that performing a 

measurement on the system generally changes its state. More precisely: After measuring 
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an observable A, the system will be in an eigenstate of A; thus the state has changed, 

unless the system was already in that eigenstate. This expresses a kind of logical 

consistency: If we measure A twice in the same run of the experiment, the measurements 

being directly consecutive in time, then they will produce the same results. This has some 

strange consequences however: 

Consider two observables, A and B, where A corresponds to a measurement earlier in time 

than B.[7] Suppose that the system is in an eigenstate of B. If we measure only B, we will 

not notice statistical behaviour. If we measure first A and then B in the same run of the 

experiment, the system will transfer to an eigenstate of A after the first measurement, and 

we will generally notice that the results of B are statistical. Thus: Quantum mechanical 

measurements influence one another, and it is important in which order they are 

performed. 

Another feature of quantum states becomes relevant if we consider a physical system that 

consists of multiple subsystems; for example, an experiment with two particles rather than 

one. Quantum physics allows for certain states, calledentangled states, that show certain 

statistical correlations between measurements on the two particles which cannot be 

explained by classical theory. For details, seeEntanglement. These entangled states lead to 

experimentally testable properties (Bell's theorem) that allow us to distinguish between 

quantum theory and alternative classical (non-quantum) models. 

 

Schrödinger picture vs. Heisenberg picture 

In the discussion above, we have taken the observables P(t), Q(t) to be dependent on time, 

while the state σ was fixed once at the beginning of the experiment. This approach is 

called the Heisenberg picture. One can, equivalently, treat the observables as fixed, while 

the state of the system depends on time; that is known as the Schrödinger picture. 

Conceptually (and mathematically), both approaches are equivalent; choosing one of them 

is a matter of convention. 

 

Both viewpoints are used in quantum theory. While non-relativistic Quantum mechanics is 

usually formulated in terms of the Schrödinger picture, the Heisenberg picture is often 

preferred in a relativistic context, that is, for Quantum field theory. Compare with Dirac 

picture.[8] 
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Formalism in quantum physics 
See also: mathematical formulation of quantum mechanics 

Pure states as rays in a Hilbert space 

Quantum physics is most commonly formulated in terms of linear algebra, as follows. Any 

given system is identified with some finite- or infinite-dimensionalHilbert space. The pure 

states correspond to vectors of norm 1. Thus the set of all pure states corresponds to 

the unit sphere in the Hilbert space. 

 

If two unit vectors differ only by a scalar of magnitude 1, known as a "global phase factor", 

then they are indistinguishable. Therefore, distinct pure states can be put in 

correspondence with "rays" in the Hilbert space, or equivalently points in theprojective 

Hilbert space. 

 

Bra–ket notation 

Calculations in quantum mechanics make frequent use of linear operators, inner 

products, dual spaces and Hermitian conjugation. In order to make such calculations more 

straightforward, and to obviate the need (in some contexts) to fully understand the 

underlying linear algebra, Paul Dirac invented a notation to describe quantum states, known 

as bra-ket notation. Although the details of this are beyond the scope of this article (see 

the article Bra–ket notation), some consequences of this are: 

 

 The variable name used to denote a vector (which corresponds to a pure quantum state) is 

chosen to be of the form  (where the " " can be replaced by any other symbols, letters, 

numbers, or even words). This can be contrasted with the usual mathematical notation, 

where vectors are usually bold, lower-case letters, or letters with arrows on top. 

 Instead of vector, the term ket is used synonymously. 

 Each ket  is uniquely associated with a so-called bra, denoted , which is also said to 

correspond to the same physical quantum state. Technically, the bra is the adjoint of the ket. 

It is an element of the dual space, and related to the ket by the Riesz representation 

theorem. In a finite-dimensional space with a chosen basis, writing  as a column 

vector,  is a row vector; just take the transpose and entry-wise complex conjugate 

of . 
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 inner products (also called brackets) are written so as to look like a bra and ket next to each 

other: . (The phrase "bra-ket" is supposed to resemble "bracket".) 

 

Spin 

The angular momentum has the same dimension as the Planck constant and, at quantum 

scale, behaves as a discrete degree of freedom. Most particles possess a kind of intrinsic 

angular momentum that does not appear at all in classical mechanics and arises from 

Dirac's relativistic generalization of the theory. Mathematically it is described with spinors. 

In non-relativistic quantum mechanics the fundamental representations of SU(2) are used to 

describe this additional freedom. For a given particle, it is characterized quantitatively by a 

non-negative number S that, in units of Planck's reduced constant ħ, is either aninteger (0, 

1, 2 ...) or a half-integer (1/2, 3/2, 5/2 ...). For a massive particle of the spin S, its spin 

quantum number m always assumes 2S + 1 possible values from the set 

 

 

As a consequence, the quantum state of a particle is described by a vector-valued wave 

function with values in C2S+1 or, equivalently, by a complex-valued function of four variables: 

one discrete Quantum number variable is added to three continuous (spatial) variables. 

 

Many-body states and particle statistics 

The quantum state of a system of N particles is described by a complex-valued function 

with four variables per particle, e.g. 

 

 

Here, the spin variables mν assume values from the set 

 

where  is the spin of νth particle. 

Moreover, the case of identical particles makes the difference between bosons(particles with 

integer spin) and fermions (particles with half-integer spin). The above N-particle function 

must either be symmetrized (in the bosonic case) or anti-symmetrized (in the fermionic 

case) with respect to the particle numbers. If not all N particles are identical, but some of 
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them are, then the function must be (anti)symmetrized over respective groups of variables, 

for each flavour of particles separately according to its statistics. 

Electrons are fermions with S = 1/2, photons (quanta of light) are bosons withS = 1 

(although in the vacuum they are massless and can't be described with Schrödingerian 

mechanics). 

Apart from the symmetrization or anti-symmetrization, N-particle spaces of states can 

thus simply be obtained by tensor products of one-particle spaces, to which we return 

herewith. 

 

Basis states of one-particle systems 

As with any Hilbert space, if a basis is chosen for the Hilbert space of a system, then any ket 

can be expanded as a linear combination of those basis elements. Symbolically, given basis 

kets , any ket  can be written 

 

where ci are complex numbers. In physical terms, this is described by saying that  has 

been expressed as a quantum superposition of the states . If the basis kets are chosen 

to be orthonormal (as is often the case), then . 

One property worth noting is that the normalized states  are characterized by 

 

Expansions of this sort play an important role in measurement in quantum mechanics. In 

particular, if the  are eigenstates (with eigenvalues ki) of an observable, and that 

observable is measured on the normalized state , then the probability that the result of 

the measurement is ki is |ci|2. (The normalization condition above mandates that the total 

sum of probabilities is equal to one.) 

A particularly important example is the position basis, which is the basis consisting of 

eigenstates of the observable which corresponds to measuring position. If these 

eigenstates are nondegenerate (for example, if the system is a single, spinless particle), 

then any ket  is associated with a complex-valued function of three-dimensional space: 

 

This function is called the wavefunction corresponding to . 
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Superposition of pure states 
Main article: Quantum superposition 

One aspect of quantum states, mentioned above, is that superpositions of them can be 

formed. If  and  are two kets corresponding to quantum states, the ket 

 

is a different quantum state (possibly not normalized). Note that which quantum state it is 

depends on both the amplitudes and phases (arguments) of  and . In other words, for 

example, even though  and  (for real θ) correspond to the same physical 

quantum state, they are not interchangeable, since for example 

 and  do not (in general) correspond to the same physical state. 

However,  and  do correspond to the same physical state. This 

is sometimes described by saying that "global" phase factors are unphysical, but "relative" 

phase factors are physical and important. 

One example of a quantum interference phenomenon that arises from superposition is 

the double-slit experiment. The photon state is a superposition of two different states, one 

of which corresponds to the photon having passed through the left slit, and the other 

corresponding to passage through the right slit. The relative phase of those two states has 

a value which depends on the distance from each of the two slits. Depending on what that 

phase is, the interference is constructive at some locations and destructive in others, 

creating the interference pattern. By the analogy with coherence in other wave phenomena, 

a superposed state can be referred to as a coherent superposition. 

Another example of the importance of relative phase in quantum superposition isRabi 

oscillations, where the relative phase of two states varies in time due to theSchrödinger 

equation. The resulting superposition ends up oscillating back and forth between two 

different states. 

 

Mixed states 

A pure quantum state is a state which can be described by a single ket vector, as described 

above. A mixed quantum state is a statistical ensemble of pure states (see Quantum 

statistical mechanics). Mixed states inevitably arise from pure states when, for a composite 

quantum system  with an entangled state on it, the part  is inaccessible to 

the observer. The state of the part  is expressed then as the partial trace over . 
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A mixed state cannot be described as a ket vector. Instead, it is described by its 

associated density matrix (or density operator), usually denoted ρ. Note that density 

matrices can describe both mixed and pure states, treating them on the same footing. 

Moreover, a mixed quantum state on a given quantum system described by a Hilbert 

space  can be always represented as the partial trace of a pure quantum state (called 

a purification) on a larger bipartite system for a sufficiently large Hilbert space . 

The density matrix is defined as 

 

 

where  is the fraction of the ensemble in each pure state  Here, one typically uses a 

one-particle formalism to describe the average behaviour of an N-particle system. 

A simple criterion for checking whether a density matrix is describing a pure or mixed 

state is that the trace of ρ2 is equal to 1 if the state is pure, and less than 1 if the state is 

mixed.[9] Another, equivalent, criterion is that the von Neumann entropy is 0 for a pure 

state, and strictly positive for a mixed state. 

The rules for measurement in quantum mechanics are particularly simple to state in terms 

of density matrices. For example, the ensemble average (expectation value) of a 

measurement corresponding to an observable A is given by 

 

 

where  are eigenkets and eigenvalues, respectively, for the operator A, and "tr" 

denotes trace. It is important to note that two types of averaging are occurring, one being a 

weighted quantum superposition over the basis kets of the pure states, and the other 

being a statistical (said incoherent) average with the probabilities ps of those states. 

 

Interpretation 

Although theoretically, for a given quantum system, a state vector provides the full 

information about its evolution, it is not easy to understand what information about the 

"real world" does it carry. Due to the uncertainty principle, a state, even if has the value of 

one observable exactly defined (i.e. the observable has this state as an eigenstate), cannot 

exactly define values of all observables. 
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For state vectors (pure states), probability amplitudes offer a probabilisticinterpretation. It 

can be generalized for all states (including mixed), for instance, as expectation values 

mentioned above. 

This section requires expansion. (January 2014) 

Mathematical generalizations 

States can be formulated in terms of observables, not of a vector space. These arepositive 

normalized linear functionals on a C*-algebra, or sometimes other classes of algebras of 

observables. See Gelfand–Naimark–Segal construction for more details. 

Notes 

1. ^ To avoid misunderstandings: Here we mean that Q(t) and P(t) are measured in the same 

state, but not in the same run of the experiment. 

References 

1. ^ Ballentine, Leslie (1998). Quantum Mechanics: A Modern Development (2nd, illustrated, 

reprint ed.). World Scientific. ISBN 9789810241056. 

2. ^ Griffiths, David J. (2004), Introduction to Quantum Mechanics (2nd ed.), Prentice 

Hall, ISBN 0-13-111892-7 

3. ^ Ballentine, L. E. (1970), "The Statistical Interpretation of Quantum Mechanics",Reviews of 

Modern Physics 42: 358–

381, Bibcode:1970RvMP...42..358B,doi:10.1103/RevModPhys.42.358 

4. ^ Sometimes written ">"; see angle brackets. 

5. ^ Statistical Mixture of States 

6. ^ http://electron6.phys.utk.edu/qm1/modules/m6/statistical.htm 

7. ^ For concreteness' sake, suppose that A = Q(t1) and B = P(t2) in the above example, 

with t2 > t1 > 0. 

8. ^ Gottfried, Kurt; Yan, Tung-Mow (2003). Quantum Mechanics: Fundamentals(2nd, 

illustrated ed.). Springer. p. 65. ISBN 9780387955766. 

9. ^ Blum, Density matrix theory and applications, page 39. Note that this criterion works when 

the density matrix is normalized so that the trace of ρ is 1, as it is for the standard definition 

given in this section. Occasionally a density matrix will be normalized differently, in which 

case the criterion is  

http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=probability%20amplitudes
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=probabilistic
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=Quantum%20state#expectation
http://en.wikipedia.org/w/index.php?title=Quantum_state&action=edit
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=positive%20normalized%20linear%20functionals
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=positive%20normalized%20linear%20functionals
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=C*-algebra
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=Gelfand%E2%80%93Naimark%E2%80%93Segal%20construction
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=Quantum%20state#cite_ref-n1_7-0
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=Quantum%20state#cite_ref-Ballentine_1-0
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=ISBN
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=9789810241056
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=Quantum%20state#cite_ref-Griffiths2004_2-0
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=ISBN
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=0-13-111892-7
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=Quantum%20state#cite_ref-Ballentine1970_3-0
http://link.aps.org/doi/10.1103/RevModPhys.42.358
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=Bibcode
http://adsabs.harvard.edu/abs/1970RvMP...42..358B
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=doi
http://dx.doi.org/10.1103%2FRevModPhys.42.358
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=Quantum%20state#cite_ref-4
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=angle%20brackets
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=Quantum%20state#cite_ref-5
http://xbeams.chem.yale.edu/~batista/vaa/node4.html
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=Quantum%20state#cite_ref-6
http://electron6.phys.utk.edu/qm1/modules/m6/statistical.htm
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=Quantum%20state#cite_ref-8
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=Quantum%20state#cite_ref-Gottfried_9-0
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=ISBN
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=9780387955766
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=Quantum%20state#cite_ref-10
http://books.google.com/books?id=kl-pMd9Qx04C&pg=PA39


Further reading 

The concept of quantum states, in particular the content of the section Formalism in 

quantum physics above, is covered in most standard textbooks on quantum mechanics. 

For a discussion of conceptual aspects and a comparison with classical states, see: 

 Isham, Chris J (1995). Lectures on Quantum Theory: Mathematical and Structural 

Foundations. Imperial College Press. ISBN 978-1-86094-001-9. 

For a more detailed coverage of mathematical aspects, see: 

 Bratteli, Ola; Robinson, Derek W (1987). Operator Algebras and Quantum Statistical 

Mechanics 1. Springer. ISBN 978-3-540-17093-8. 2nd edition. In particular, see Sec. 2.3. 

For a discussion of purifications of mixed quantum states, see Chapter 2 of John Preskill's 

lecture notes for Physics 219 at Caltech. 
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