
Quantum Mechanics_propagator 
 

This article is about Quantum field theory. For plant propagation, see Plant 

propagation. 

 

In Quantum mechanics and quantum field theory, the propagator gives the probability 

amplitude for a particle to travel from one place to another in a given time, or to travel 

with a certain energy and momentum. In Feynman diagrams, which calculate the rate 

of collisions in quantum field theory, virtual particles contribute their propagator to the 

rate of the scattering event described by the diagram. They also can be viewed as the 

inverse of the wave operator appropriate to the particle, and are therefore often 

called Green's functions. 

 

 

Non-relativistic propagators 

In non-relativistic quantum mechanics the propagator gives the probability amplitude 

for a particle to travel from one spatial point at one time to another spatial point at a 

later time. It is the Green's function (fundamental solution) for the Schrödinger 

equation. This means that, if a system has Hamiltonian H, then the appropriate 

propagator is a function 

 

 

 

satisfying 

 

where Hx denotes the Hamiltonian written in terms of the x coordinates, δ(x)denotes 

the Dirac delta-function, Θ(x) is the Heaviside step function and K(x,t;x',t')is 

the kernel of the differential operator in question, often referred to as the propagator 

instead of G in this context, and henceforth in this article. This propagator can also be 

written as 
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where Û(t,t' ) is the unitary time-evolution operator for the system taking states at 

time t to states at time t'. 

 

The quantum mechanical propagator may also be found by using a path integral, 

 

where the boundary conditions of the path integral include q(t)=x, q(t')=x' . 

Here Ldenotes the Lagrangian of the system. The paths that are summed over move 

only forwards in time. 

In non-relativistic Quantum mechanics, the propagator lets you find the state of a 

system given an initial state and a time interval. The new state is given by the equation 

 

 

 

If K(x,t;x',t') only depends on the difference x−x' , this is a convolution of the initial 

state and the propagator. 

 

Basic Examples: Propagator of Free Particle and Harmonic Oscillator 

For a time-translationally invariant system, the propagator only depends on the time 

difference (t−t'), so it may be rewritten as 

 

 

 

The propagator of a one-dimensional free particle, with the far-right expression 

obtained via a saddle-point approximation,[1] is then 

 

 

Similarly, the propagator of a one-dimensional quantum harmonic oscillator is 

the Mehler kernel, 

 

For the N-dimensional case, the propagator can be simply obtained by the product 
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Relativistic propagators 

In relativistic quantum mechanics and quantum field theory the propagators 

areLorentz invariant. They give the amplitude for a particle to travel between 

twospacetime points. 

 

Scalar propagator 

In quantum field theory the theory of a free (non-interacting) scalar field is a useful 

and simple example which serves to illustrate the concepts needed for more 

complicated theories. It describes spin zero particles. There are a number of possible 

propagators for free scalar field theory. We now describe the most common ones. 

 

Position space 

The position space propagators are Green's functions for the Klein–Gordon equation. 

This means they are functions G(x,y) which satisfy 

 

where: 

  are two points in Minkowski spacetime. 

  is the d'Alembertian operator acting on the x coordinates. 

  is the Dirac delta-function. 

(As typical in relativistic quantum field theory calculations, we use units where 

the speed of light, c, and Planck's reduced constant, ħ, are set to unity.) 

We shall restrict attention to 4-dimensional Minkowski spacetime. We can perform 

a Fourier transform of the equation for the propagator, obtaining 

 

 

This equation can be inverted in the sense of distributions noting that the 

equation xf(x)=1 has the solution 

 

, 
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with ε implying the limit to zero. Below, we discuss the right choice of the sign arising 

from causality requirements. 

 

The solution is 

 

where 

 

is the 4-vector inner product. 

 

The different choices for how to deform the integration contour in the above 

expression lead to different forms for the propagator. The choice of contour is usually 

phrased in terms of the  integral. 

 

The integrand then has two poles at 

 

 

so different choices of how to avoid these lead to different propagators. 

 

Causal propagator 

Retarded propagator: 

 

A contour going clockwise over both poles gives the causal retarded propagator. This 

is zero if  and  are spacelike or if  (i.e. if  is to the future of ). 

This choice of contour is equivalent to calculating the limit: 

 

Here 

 

is the proper time from  to  and  is a Bessel function of the first kind. The 

expression  means  causally precedes  which, for Minkowski spacetime, 

means 
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 and . 

This expression can also be expressed in terms of the vacuum expectation value of 

the commutator of the free scalar field operator, 

 

 

where  

 

is the Heaviside step function and 

 

 

is the commutator. 

Advanced propagator: 

 

A contour going anti-clockwise under both poles gives the causal advanced 

propagator. This is zero if  and  are spacelike or if  (i.e. if  is to the past 

of ). 

This choice of contour is equivalent to calculating the limit: 

 

This expression can also be expressed in terms of the vacuum expectation value of 

the commutator of the free scalar field. In this case, 

 

Feynman propagator 

 

A contour going under the left pole and over the right pole gives the Feynman 

propagator. 

This choice of contour is equivalent to calculating the limit (see Huang p. 30) 

http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=vacuum%20expectation%20value
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=commutator
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=Heaviside%20step%20function
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=commutator
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=vacuum%20expectation%20value
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=commutator
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=


  

 

 

Here 

 

 

where x and y are two points in Minkowski spacetime, and the dot in the exponent is 

a four-vector inner product. H1(1) is a Hankel function and K1 is amodified Bessel 

function. 

 

This expression can be derived directly from the field theory as the vacuum 

expectation value of the time-ordered product of the free scalar field, that is, the 

product always taken such that the time ordering of the spacetime points is the same, 

 

  

 

 

This expression is Lorentz invariant, as long as the field operators commute with one 

another when the points x and y are separated by a spacelike interval. 

 

The usual derivation is to insert a complete set of single-particle momentum states 

between the fields with Lorentz covariant normalization, then show that theΘ functions 

providing the causal time ordering may be obtained by a contour integral along the 

energy axis if the integrand is as above (hence the infinitesimal imaginary part, to 

move the pole off the real line). 

 

The propagator may also be derived using the path integral formulation of quantum 

theory. 

 

Momentum space propagator 

The Fourier transform of the position space propagators can be thought of as 

propagators in momentum space. These take a much simpler form than the position 

space propagators. 

http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=Minkowski%20spacetime
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=four-vector
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=inner%20product
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=Hankel%20function
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=modified%20Bessel%20function
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=modified%20Bessel%20function
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=modified%20Bessel%20function
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=vacuum%20expectation%20value
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=vacuum%20expectation%20value
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=vacuum%20expectation%20value
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=time-ordered
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=Lorentz%20invariant
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=spacelike
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=contour%20integral
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=path%20integral%20formulation
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=Fourier%20transform
http://wateralkalinemachine.com/quantum-mechanics/?wiki-maping=momentum%20space


They are often written with an explicit  term although this is understood to be a 

reminder about which integration contour is appropriate (see above). This  term is 

included to incorporate boundary conditions and causality (see below). 

 

For a 4-momentum  the causal and Feynman propagators in momentum space are: 

 

 

 

For purposes of Feynman diagram calculations it is usually convenient to write these 

with an additional overall factor of  (conventions vary). 

 

Faster than light? 

The Feynman propagator has some properties that seem baffling at first. In particular, 

unlike the commutator, the propagator is nonzero outside of the light cone, though it 

falls off rapidly for spacelike intervals. Interpreted as an amplitude for particle motion, 

this translates to the virtual particle traveling faster than light. It is not immediately 

obvious how this can be reconciled with causality: can we use faster-than-light virtual 

particles to send faster-than-light messages? 

 

The answer is no: while in classical mechanics the intervals along which particles and 

causal effects can travel are the same, this is no longer true in quantum field theory, 

where it is commutators that determine which operators can affect one another. 

So what does the spacelike part of the propagator represent? In QFT the vacuumis an 

active participant, and particle numbers and field values are related by anuncertainty 

principle; field values are uncertain even for particle number zero. There is a 

nonzero probability amplitude to find a significant fluctuation in the vacuum value of 

the field  if one measures it locally (or, to be more precise, if one measures an 

operator obtained by averaging the field over a small region). Furthermore, the 

dynamics of the fields tend to favor spatially correlated fluctuations to some extent. 

The nonzero time-ordered product for spacelike-separated fields then just measures 

the amplitude for a nonlocal correlation in these vacuum fluctuations, analogous to 
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an EPR correlation. Indeed, the propagator is often called a two-point correlation 

function for the free field. 

 

Since, by the postulates of quantum field theory, all observable operators commute 

with each other at spacelike separation, messages can no more be sent through these 

correlations than they can through any other EPR correlations; the correlations are in 

random variables. 

 

In terms of virtual particles, the propagator at spacelike separation can be thought of 

as a means of calculating the amplitude for creating a virtual particle-antiparticle pair 

that eventually disappear into the vacuum, or for detecting a virtual pair emerging 

from the vacuum. In Feynman's language, such creation and annihilation processes are 

equivalent to a virtual particle wandering backward and forward through time, which 

can take it outside of the light cone. However, no causality violation is involved. 

 

Propagators in Feynman diagrams 

The most common use of the propagator is in calculating probability amplitudesfor 

particle interactions using Feynman diagrams. These calculations are usually carried 

out in momentum space. In general, the amplitude gets a factor of the propagator for 

every internal line, that is, every line that does not represent an incoming or outgoing 

particle in the initial or final state. It will also get a factor proportional to, and similar in 

form to, an interaction term in the theory'sLagrangian for every internal vertex where 

lines meet. These prescriptions are known as Feynman rules. 

Internal lines correspond to virtual particles. Since the propagator does not vanish for 

combinations of energy and momentum disallowed by the classical equations of 

motion, we say that the virtual particles are allowed to be off shell. In fact, since the 

propagator is obtained by inverting the wave equation, in general it will have 

singularities on shell. 

 

The energy carried by the particle in the propagator can even be negative. This can be 

interpreted simply as the case in which, instead of a particle going one way, 

its antiparticle is going the other way, and therefore carrying an opposing flow of 

positive energy. The propagator encompasses both possibilities. It does mean that one 
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has to be careful about minus signs for the case of fermions, whose propagators are 

not even functions in the energy and momentum (see below). 

Virtual particles conserve energy and momentum. However, since they can be off shell, 

wherever the diagram contains a closed loop, the energies and momenta of the virtual 

particles participating in the loop will be partly unconstrained, since a change in a 

quantity for one particle in the loop can be balanced by an equal and opposite change 

in another. Therefore, every loop in a Feynman diagram requires an integral over a 

continuum of possible energies and momenta. In general, these integrals of products 

of propagators can diverge, a situation that must be handled by the process 

of Renormalization. 

 

Other theories 

If the particle possesses spin then its propagator is in general somewhat more 

complicated, as it will involve the particle's spin or polarization indices. The 

momentum-space propagator used in Feynman diagrams for a Dirac field representing 

the electron in Quantum electrodynamics has the form 

 

 

where the  are the gamma matrices appearing in the covariant formulation of the 

Dirac equation. It is sometimes written, using Feynman slash notation, 

 

for short. In position space we have: 

 

This is related to the Feynman propagator by 

 

 

 

 

where . 
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The propagator for a gauge boson in a Gauge theory depends on the choice of 

convention to fix the gauge. For the gauge used by Feynman and Stueckelberg, the 

propagator for a photon is 

 

The propagator for a massive vector field can be derived from the Stueckelberg 

Lagrangian. The general form with gauge parameter  reads 

 

With this general form one obtains the propagator in unitary gauge for , the 

propagator in Feynman or 't Hooft gauge for  and in Landau or Lorenz gauge 

for  There are also other notations where the gauge parameter is the inverse 

of . The name of the propagator however refers to its final form and not necessarily 

to the value of the gauge parameter. 

Unitary gauge: 

 

Feynman ('t Hooft) gauge: 

 

Landau (Lorenz) gauge: 

 

Related singular functions 

The scalar propagators are Green's functions for the Klein–Gordon equation. There are 

related singular functions which are important in quantum field theory. We follow the 

notation in Bjorken and Drell.[2] See also Bogolyubov and Shirkov (Appendix A). These 

function are most simply defined in terms of the vacuum expectation value of products 

of field operators. 

 

Solutions to the Klein–Gordon equation 

Pauli–Jordan function 

The commutator of two scalar field operators defines the Pauli–Jordan 

function  by[2] 
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with 

 

This satisfies  and is zero if . 

 

Positive and negative frequency parts (cut propagators) 

We can define the positive and negative frequency parts of , sometimes 

called cut propagators, in a relativistically invariant way. 

 

This allows us to define the positive frequency part: 

, 

and the negative frequency part: 

. 

These satisfy[2] 

 

and 

 

Auxiliary function 

The anti-commutator of two scalar field operators defines  function by 

 

with 

 

This satisfies  

 

Green's functions for the Klein-Gordon equation 

The retarded, advanced and Feynman propagators defined above are all Green's 

functions for the Klein-Gordon equation. They are related to the singular functions 

by[2] 

  

  

  

where  
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