
Solid Mechanics Part I                                                                                Kelly 101

                                        Plane Strain 
 
A state of plane strain is defined as follows: 
 
Plane Strain: 
If the strain state at a material particle is such that the only non-zero strain components act 
in one plane only, the particle is said to be in plane strain. 
 
The axes are usually chosen such that the yx   plane is the plane in which the strains are 
non-zero, Fig. 4.2.1. 
 

 
 

Figure 4.2.1: non-zero strain components acting in the x – y plane 
 
Then 0xz yz zz     .  The fully three dimensional strain matrix reduces to a two 

dimensional one: 
 



























yyyx

xyxx

zzzyzx

yzyyyx

xzxyxx








                            (4.2.1) 

 
 
4.2.1 Analysis of Plane Strain 
 
Stress transformation formulae, principal stresses, stress invariants and formulae for 
maximum shear stress were presented in §4.4-§4.5.  The strain is very similar to the 
stress.  They are both mathematical objects called tensors, having nine components, and 
all the formulae for stress hold also for the strain.  All the equations in section 3.5.2 are 
valid again in the case of plane strain, with   replaced with  .  This will be seen in what 
follows. 
 
Strain Transformation Formula 
 
Consider two perpendicular line-elements lying in the coordinate directions x  and y , and 

suppose that it is known that the strains are xyyyxx  ,, , Fig. 4.2.2.  Consider now a 

second coordinate system, with axes yx , , oriented at angle   to the first system, and 
consider line-elements lying along these axes.  Using some trigonometry, it can be shown 
that the line-elements in the second system undergo strains according to the following 
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(two dimensional) strain transformation equations (see the Appendix to this section, 
§4.2.5, for their derivation): 
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 Strain Transformation Formulae (4.2.2) 

 

 
 

Figure 4.2.2: A rotated coordinate system 
 
Note the similarity between these equations and the stress transformation formulae, Eqns. 
3.4.8.  Although they have the same structure, the stress transformation equations were 
derived using Newton’s laws, whereas no physical law is used to derive the strain 
transformation equations 4.2.2, just trigonometry. 
 
Eqns. 4.2.2 are valid only when the strains are small (as can be seen from their derivation 
in the Appendix to this section), and the engineering/small strains are assumed in all 
which follows.  The exact strains, Eqns. 4.1.7, do not satisfy Eqn. 4.2.2 and for this reason 
they are rarely used in 2D analyses – when the strains are large, other strain measures, 
such as those in Eqns. 4.1.4, are used.    
 
Principal Strains 
 
Using exactly the same arguments as used to derive the expressions for principal stress, 
there is always at least one set of perpendicular line elements which stretch and/or 
contract, but which do not undergo angle changes.  The strains in this special coordinate 
system are called principal strains, and are given by (compare with Eqns. 3.5.5) 
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       Principal Strains (4.2.3) 

 
Further, it can be shown that 1  is the maximum normal strain occurring at the point, and 

that 2  is the minimum normal strain occurring at the point. 

 
The principal directions, that is, the directions of the line elements which undergo the 
principal strains, can be obtained from (compare with Eqns. 3.5.4) 
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Here,   is the angle at which the principal directions are oriented with respect to the x  
axis, Fig. 4.2.2. 
 
 
Maximum Shear Strain 
 
Analogous to Eqn. 3.5.9, the maximum shear strain occurring at a point is 
 

 1 2max

1

2xy         (4.2.5) 

 
and the perpendicular line elements undergoing this maximum angle change are oriented 
at o45  to the principal directions. 
 
Example (of Strain Transformation) 
 
Consider the block of material in Fig. 4.2.3a.  Two sets of perpendicular lines are etched 
on its surface.  The block is then stretched, Fig. 4.2.3b. 
 

 
 

Figure 4.2.3: A block with strain measured in two different coordinate systems 
 
This is a homogeneous deformation, that is, the strain is the same at all points.  However, 
in the yx   description, 0xx  and 0 xyyy  , but in the yx   description, none of 

the strains is zero.  The two sets of strains are related through the strain transformation 
equations. 

■ 
 
Example (of Strain Transformation) 
 
As another example, consider a square material element which undergoes a pure shear, as 
illustrated in Fig. 4.2.4, with  

 
01.0,0  xyyyxx   
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Figure 4.2.4: A block under pure shear 
 
From Eqn. 4.2.3, the principal strains are 1 20.01, 0.01      and the principal 

directions are obtained from Eqn. 4.2.4 as  45 .  To find the direction in which the 
maximum normal strain occurs, put  45  in the strain transformation formulae to find 
that 1 0.01xx     , so the deformation occurring in a piece of material whose sides are 

aligned in these principal directions is as shown in Fig. 4.2.5. 
 

 
 

Figure 4.2.5: Principal strains for the block in pure shear 
 
The strain as viewed along the principal directions, and using the x y  system, are as 
shown in Fig. 4.2.6. 
 

 
 

Figure 4.2.6: Strain viewed from two different coordinate systems 
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Note that, since the original yx   axes were oriented at  45  to the principal directions, 

these axes are those of maximum shear strain – the original 01.0xy  is the maximum 

shear strain occurring at the material particle. 
■ 

 
 
4.2.2 Thick Components 
 
It turns out that, just as the state of plane stress often arises in thin components, a state of 
plane strain often arises in very thick components. 
 
Consider the three dimensional block of material in Fig. 4.2.7.  The material is 
constrained from undergoing normal strain in the z  direction, for example by preventing 
movement with rigid immovable walls – and so 0zz .  
 

 
Figure 4.2.7: A block of material constrained by rigid walls 

 
If, in addition, the loading is as shown in Fig. 4.2.7, i.e. it is the same on all cross sections 
parallel to the zy   plane (or zx   plane) – then the line elements shown in Fig. 4.2.8 
will remain perpendicular (although they might move out of plane). 
 

 
Figure 4.2.8: Line elements etched in a block of material – they remain 

perpendicular in a state of plane strain 
 
Then 0 yzxz  .  Thus a state of plane strain will arise.  
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The problem can now be analysed using the three independent strains, which simplifies 
matters considerable.  Once a solution is found for the deformation of one plane, the 
solution has been found for the deformation of the whole body, Fig. 4.2.9. 
 

 
 

Figure 4.2.9: three dimensional problem reduces to a two dimensional one for the 
case of plane strain 

 
Note that reaction stresses zz  act over the ends of the large mass of material, to prevent 

any movement in the z direction, i.e. zz  strains, Fig. 4.2.10.   

 

 
Figure 4.2.10: end-stresses required to prevent material moving in the z direction 

 
A state of plane strain will also exist in thick structures without end walls.  Material 
towards the centre is constrained by the mass of material on either side and will be 
(approximately) in a state of plane strain, Fig. 4.2.10. 
 

 
Figure 4.2.10: material in an approximate state of plane strain 

 
The concept of Plane Strain is useful when solving many types of problem involving thick 
components, even when the ends of the mass of material are allowed to move (as in Fig. 
4.2.10); this idea will be explored in the context of generalised plane strain and 
associated topics in Book II. 
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