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Abstract: - In this paper, for analyses of metal forming problems, a point collocation method (PCM) with a 
boundary layer of finite element is developed. PCMs have some advantages such as no mesh, no integration. 
While, the robustness of the PCMs is an issue especially when scattered and random points are used. To improve 
the robustness, some studies suggest that the positivity conditions can be important when using the PCMs. For 
boundary points, however, the positivity conditions cannot be satisfied, so that it is possible to get large numerical 
errors from the boundary points when using the PCMs. Specifically, the errors could arise in point collocation 
analyses with complicated boundary conditions. In this paper, by introducing a boundary layer of finite element in 
boundary domain of workpiece, unsatisfactory issue of the positivity conditions of boundary points can be 
avoided, and the complicated boundary conditions can be easily imposed with the boundary layer of finite element. 
A forging process is analyzed by using the hybrid PCM/FEM. 
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1   Introduction 
Meshless methods have found application in many 
references. The early representatives of meshless 
methods are the diffuse element method [1], the 
element free Galerkin method [2], the reproducing 
kernel particle method [3], the hp-clouds method [4], 
the partition of unity method [5], the finite point 
method  [6], the local boundary integral equation 
method [7], the meshless local Petrov-Galerkin 
(MLPG) approach [8], and the point collocation 
method (PCM) based on reproducing kernel 
approximations [9]. Some meshless methods are based 
on weak form, in which background meshes are 
inevitable in implementation to obtain the numerical 
integration. Some meshless methods are truly meshless 
methods, in which no background meshes are 
introduced. In most meshless techniques, however, 
complicated non-polynomial interpolation functions 
are used which render the integration of the weak form 
rather difficult. Failure to perform the integration 
accurately results in loss of accuracy and possibly 
stability of solution scheme. The integration of 
complicated non-polynomial interpolation function 
costs much CPU time, too. 

The PCM is a kind of truly meshless method, and 
has no issues of the integration scheme, the integration 
accuracy and the integration CPU time. Therefore, the 

PCM has some advantages such as no mesh, no 
integration. Several PCMs based on different types of 
approximations or interpolations have been presented 
in the literature. Onate et al. [6] have proposed a finite 
point method based on weighted least squares 
interpolations for the analyses of convective transport 
and fluid flow problems. Onate et al. [10] have also 
proposed a residual stabilization procedure, adequate 
for the finite point method, and further extended the 
finite point method to the solution of the 
advective-convective transport equations as well as 
those governing the flow of compressible fluids. Aluru 
[9] has presented a PCM based on reproducing kernel 
approximations for numerical solution partial 
differential equations with appropriate boundary 
conditions. Jin, Li and Aluru [11] have shown the 
robustness of collocation meshless methods can be 
improved by ensuring that the positivity conditions are 
satisfied when constructing approximation functions 
and their derivatives. Wang and Takao [12] have 
proposed an isoparametric finite point method based on 
the concept of local isoparametric interpolation. 
Boroomand, Tabatabaei and Onate [13] have presented 
a stabilized version of the finite point method to 
eliminate the ill-conditioning effect due to directional 
arrangement of the points. Patricio and Rosa [14] have 
given a numerical solution of a singularly perturbed 
two-point boundary-value problem using collocation. 
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Atluri, Liu and Han [15] have presented a MLPG 
mixed collocation method by using the Dirac delta 
function as the test function in the MLPG method, and 
shown that the MPLG mixed collocation method is 
more efficient than the other MLPG implementations, 
including the MLPG finite volume method.  Atluri, Liu 
and Han [16] have proposed a finite difference method, 
within the framework of the MLPG approach, for 
solving solid mechanics problems. Li and Atluri [17] 
have demonstrated the suitability and versatility of the 
MLPG mixed collocation method by solving the 
problem of topology-optimization of elastic structures. 
Chantasiriwan [18] has provided results of using the 
multiquadric collocation method to solve the lid-driven 
cavity flow problem. Wen and Hon [19] have 
performed a geometrically nonlinear analysis of 
Reissner-Mindlin plate by using a meshless collocation 
method based on the smooth radial basis functions. 
Caraus and Mastrorakis [20], [21] have studied the 
convergence and the stability of collocation methods 
for approximate solution of singular 
integro-differential equations. Kosec and Sarler [22] 
have explored the application of the mesh-free local 
radial basis function collocation method in solution of 
coupled heat transfer and fluid flow problems in Darcy 
porous media. Wu, Chiu and Wang [23] have 
developed a mesh-free collocation method based on 
differential reproducing kernel approximations for the 
three-dimensional analysis of simply-supported, 
doubly curved functionally graded 
magneto-electro-elastic shells under the mechanical 
load, electric displacement and magnetic flux. Yang et 
al. [24] have introduced a computational procedure 
based on meshless generalized finite difference method 
and serial magnetic resonance imaging data to quantify 
patient-specific carotid atherosclerotic plaque growth 
functions and simulate plaque progression. Spanulescu 
and Moldovan [25] have analyzed the collocation 
method for solving the Hartree-Fock equations of the 
self-consistent field in large atomic and molecular 
systems, and have proposed a method for improving its 
performances by supplementary analytical and 
numerical quadrature. Khattak, Tirmizi and Islam [26] 
have presented an algorithm for the numerical solution 
of the generalized Hirota-Satsuma equations and 
Jaulent-Miodek equations based on meshless radial 
basis functions method using collocation points, called 
Kansa’s method.  Hon and Yang [27] have applied the 
Hermite-based meshless collocation method based on 
radial basis functions to solve a default barrier model, 
which is a time-dependent boundary value problem 
with a singularity at the initial condition. Zahab, Divo 

and Kassab [28] have reported on the development and 
validation of a localized collocation meshless method 
to model laminar incompressible flows. 

While, the robustness of the PCM is an issue 
especially when scattered and random points are used. 
To improve the robustness of the PCMs, Nayroles, 
Touzot and Villon [1] suggested that the positivity 
conditions could be important when using the PCMs. 
Jin, Li and Aluru [11] have proposed techniques, based 
on modification of weighting functions, to ensure 
satisfaction of positivity conditions when using a 
scattered set of points. For boundary points, however, 
the positivity conditions cannot be satisfied, obviously, 
so that it is possible to get large numerical errors from 
the boundary points when using the PCMs. 
Specifically, the errors could arise in point collocation 
analyses with complicated boundary conditions. 

Metal forming problems are nonlinear and large 
deformation problems. They used to be analyzed by 
the conventional rigid-plastic finite element methods. 
But the conventional rigid-plastic finite element 
methods have some shortcomings as follows: 1) Mesh 
generation is needed, which is costly. 2) Remeshing is 
needed when deformation is appreciable, while 
remeshing results in loss of accuracy. 

In this paper, the PCM with a boundary layer of 
finite element is developed. By introducing a boundary 
layer of finite element in boundary domain of analyzed 
body, unsatisfactory issue of the positivity conditions 
of boundary points can be avoided, and the 
complicated boundary conditions can be easily 
imposed with the boundary layer of finite element. In 
addition, a local coordinate system is used, it renders 
the shape function and its derivatives of collocated 
points very simple. An axisymmetric forging process is 
analyzed by using the hybrid method. 
 
 
2   Formulation 
Let us assume a scalar problem governed by a partial 
differential equation: 

Ω=       inbuD ,)(                             (1) 
with boundary conditions 

tontuT Γ=       ,)(                             (2) 
uc onuu Γ=−       ,0                           (3) 

to be satisfied in a domain Ω  with boundary 
ut ΓΓ=Γ U , where D and T are appropriate differential 

operators, u is the problem unknown function (the 
velocity is adopted in this paper), b and t are external 
forces or sources acting over Ω  and along tΓ , 
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respectively.  is the assigned value of u over cu uΓ . 
Let us assume Ω  is divided into two subdomains, 

the interior domain  and the boundary domain 
. Surface between  and  is defined as S. 

inΩ

inΩboΩ boΩ
 
 
2.1  The Moving Least-Squares Approximation 
Consider a small domain , the neighborhood of a 
point , which is located in 

xΩ

1x inΩ . Over , u can be 
approximated by the moving least-squares (MLS) 
approximation [1]. The MLS approximation with 
quadratic basis is not sensitive to the number of nodes 
in a sub-domain [6]. Derivatives of interpolations using 
the MLS approximation show smaller oscillations than 
those in the partition of unity method [29]. The MLS 
approximation has better efficiency than the radial 
basis point interpolation method [30]. 

xΩ

Over a number of randomly located nodes 
, the MLS approximation  of u can 

be defined by 
{ } ixi    ,2,1, L= n ,

uh

p=

( )

hu

( ) xΩ∈∀= x     α xp ,T                   (4) 

where  is a complete 
monomial basis of order m which is functions of the 
space coordinates . For example, for an 

axisymmetric problem in which , 

( ) ( ) ( ) ( )[ x      x   xxp mpp L21
T

[ ]Tz   yx   x =

R   x =

]

[ ]TZ

[ ]22T 1 ZRZRZR                 p =x

j  ,α

pT

               (5) 
 

this is a quadratic basis, and m=6. 
The coefficient vector α  is a vector containing 

coefficients , and  is determined by 
minimizing a weighted discrete  norm, defined as: 

mj    ,,2,1 L= α

2L

( ) ( )[ ] [ ] α H Wuα Hα x x ˆˆ T2

1
−−=−∑=

=
ii

n

i
i uwJ [ ]û

0f

 (6) 

where  is the weight function, with  for 
all nodes in the support of  (the support is 
considered to be equal to 

( )xw ( )xw
( )xw

xΩ  in this paper),  
denotes the value of x at node i, n is the number of 
nodes in , and the matrices W and H are defined as 

ix

xΩ

( )
( )

( ) nnnw

w

×
⎥
⎥
⎥
⎥

⎦

⎤

=

x

x
W

L

LLL

L

L

0

0
00

2

1w

⎢
⎢
⎢
⎢

⎣

⎡ x

L

0

0
           (7) 

( )
( )

( ) mnn ×
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

xp

xp
xp

H

T

2
T

1
T

L
                        (8) 

and 
[ ]Tn2          u uuu ˆˆˆˆ 1 L=                     (9) 

where niui     ,,2,1,ˆ L=  are the fictitious nodal values of 
the function and not the nodal values of the trial 
function  in general: ( )ixhu

( )i
h

i xuu ≠ˆ                            (10) 
Minimizing J in equation (6) with respect to  yields α

u B Aα ˆ1−=                            (11) 
where 

( ) ( ) ( ) ( ) ( ) ( )[ ]nnwww xpx      xpx   xpx WHB L2211
T ==  

     (12) 

( ) ( ) ( )iii
n

i
w xp xp xH BA T

1
∑==
=

            (13) 

Substituting equation (11) into equation (4) gives a 
relation which may be written as the form of an 
interpolation function, as 

( ) ( ) i
n

i
i uN ˆˆ

1

T  xu xNuh ∑==
=

                  (14) 

where 
( ) ( ) B A xpxN 1TT −=                       (15) 

( ) ( )[ ] ij
m

j
ji pN  B A xx 1

1

−

=
∑=                 (16) 

( )xiN  is the shape function of the MLS approximation. 
The MLS approximation is well defined only when 

matrix A in equation (11) is non-singular. It may be 
seen that this is the case if and only if the rank of the 
matrix H equals m. A necessary condition for a 
well-defined MLS approximation is that at least m 
weight functions are non-zero (i.e. ) for each 
node 

mn ≥
xΩ∈x , and that the nodes in  will not be 

arranged in a special pattern. 
xΩ

In this paper, the weight functions  may use a 
Gaussian function, and the Gaussian function 
corresponding to node i is defined as 

( )xw

rd
cr

crcdw ≤≤
−−

−−−
= 0,

))/(exp(1

))/(exp())/(exp()(
2

22
      x (17a) 

rdw ≥=             , x 0)(                      (17b) 
where 1xx −=d  is the distance from node x  to point 

, and r is the radius of , which is taken as a circle 1x xΩ
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for a 2-D problem and its center is the point  (the 
center node). c is a constant. 

1x

In , the unknown function u can be approximated 
by the MLS approximation as 

xΩ

∑==≅
=

n

i
ii

h uNuu
1

T ˆ)(ˆ)()()( xuxNxx          (18) 

 
 
2.2  The Local Coordinate System 
As anisotropy of the point distribution in , matrix A 
in equation (13) becomes ill-conditioned and the 
quality of the approximation deteriorates. In order to 
prevent such undesirable effect, a local coordinate 
system 

xΩ

ηξ  ,  [13] is chosen with origin at the point  
for an axisymmetric problem: 

1x

R

RR
Δ
−

= 1ξ                             (19a) 

Z

ZZ
Δ
−

= 1η                             (19b) 

where  and  denote maximum distances along 
R and Z measured from the point  to exterior nodes 
in . In equation (17a), Gaussian function has now 
the following form in terms of the local coordinates: 

RΔ ZΔ

1x

xΩ

))/(exp(1

))/(exp()/)(exp(
)(

2

2222

c

cc
w

ρ

ρηξ
ξ

−−

−−+−
=      (20) 

c=0.25, 2=ρ  are used in this paper and as usual 
11 ≤≤≤− 1,1 ≤− ηξ  . 

The matrix A is not longer dependent on the 
dimensions of . The approximate function is also 
expressed in terms of the local coordinates as 

xΩ

∑==
=

n

i
ii

h uNu
1

T ˆ)(ˆ)()( ξξξ uN              (21) 

Over the boundary domain boΩ  of Ω , the FEM with 
one layer of finite element is used, the finite element 
approximation of u can be defined by gu

∑==
=

en

i

e
i

e
i

eeg uNu
1

T][ uN                  (22) 

where  is the shape function of FEM, and u  is the 
node value of the finite elements, 

e
iN e

i

( )i
ge

i xuu =                               (23) 

en  is the number of nodes of an element. 
 
 
2.3    The Weighted Residual Method 

On surface S between inΩ  and , the following 
compatibility condition of u is imposed: 

boΩ

gh uu =     on  S                        (24) 
     Over inΩ , the following weighted residual method 
is used: 

0)(~))((ˆ =−+Ω− ∫∫
Ω

dSwdbDw gh
i

S

h
i

in

uuu     (25) 

where  and iŵ iw~  are two weight functions. 

Substituting equations on  and  into 
equation (25), the following equation may be 
obtained:

(26) 

hu

]TeN

gu

0=( ) )[ˆ(~)ˆ(ˆ T −+Ω− ∫∫
Ω

dSwdbDw e
i

S
i

in

uuNu

iŵ  and iw~  may be defined as follow in this paper, 
respectively. 

iiw δ=ˆ                                (27) 
iiw δ=~                                  (28) 

where iδ  is Dirac δ  function. 
Substituting equations (27) and (28) into equation 

(26), the following equations are obtained: 
( ) ininbD Ω=−        u ,0ˆ

b e      uuN 0]ˆ[ T =−+−

                     (29)

            (30) ( ) SonD   û
    The boundary conditions of equations (2) and (3) are 
imposed by using FEM. 
 
 
2.4   The Positivity Conditions 
The positivity conditions [11] on the approximation 
function ( )xiN  of equation (16) and its second-order 
derivatives are stated as 

( ) 0≥jiN x                           (31) 

( ) ijN ji ≠≥∇      x ,02                  (32) 

( ) 02 piiN x∇                         (33) 
where ( )jiN x  is the approximation function of a point 
i evaluated at a point j. 

It has been shown that the satisfaction of the 
positivity conditions ensures the convergence of the 
finite difference method with arbitrary irregular 
meshes for some class of elliptic problems [31]. It has 
been shown that the significance of the positivity 
conditions in meshless collocation approaches, and 
violation of the positivity conditions can significantly 
result in a large error in the numerical solution [11]. 

For a boundary point, a neighborhood centered on 
the point cannot be defined, so the positivity conditions 
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on the boundary point cannot be satisfied. But for point 
x on S, because it is not a boundary point, a small 
domain , the neighborhood of the point x, can be 
defined. Therefore, the unsatisfactory issue of the 
positivity conditions of boundary points can be 
avoided in the hybrid PCM/FEM. 

xΩ

 
 
2.5   Formulation for Metal Forming Problems 
For an axisymmetric metal forming problem, the 
partial differential equations of mechanical equilibrium 
can be expressed as (in this paper, the body forces are 
omitted for simplicity): 

0=
−

+
∂

∂
+

∂
∂

RZR
RRZR θσσσσ

 
 

 
           (34a) 

0=+
∂
∂

+
∂

∂
RZR
RZZRZ σσσ

 
 

 
               (34b) 

where RZZR and σσσσ θ    , ，  are stress components. By 
the concept referring originally to a (nonlinear) viscous 
solid, the relating equation of stress vector σ  and 
strain rate vector ε&  can be written as: 

εσ & D=                                (35) 
for the rigid-plastic material 

⎥
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⎣

⎡
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1
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e
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D  (36) 

where eσ  and eε&  denote the equivalent stress and the 
equivalent strain rate, respectively, and g is a material 
constant and a function of material density for slightly 
compressible materials. 

Substituting the relationship equation of velocity 
and strain rate into equation (35), and then equations 
(34a) and (34b), the following non-linear equation of 
the mechanical equilibrium is derived: 

0fu =+∇2                             (37) 
in which u is the velocity vector: 

[ ]Tvu   u =                              (38) 
[ T

ZR ff    f = ]                          (39) 
where u and v denote velocity components, and 
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    (40b) 
where vε&  is the volumetric strain rate: 

θεεεε &&&& ++= ZRv                   (41) 
Over inΩ , by the MLS approximation, u in 

equation (37) can be written as: 
u N ˆT=u                           (42a) 
v N ˆT=v                           (42b) 

Substituting equation (37) into equations (29) and (30), 
the partial differential equations on the nodal velocity 
components may be obtained: 

inin Ω=+∇        v ufuN 0)ˆ,ˆ(ˆT2           (43a) 

inin Ω=+∇        v ufvN 0)ˆ,ˆ(ˆT2            (43b) 

Sone        uuNv ufuN 0]ˆ[)ˆ,ˆ(ˆ TT2 =−++∇     (44a) 

Sone        vvNv ufvN  0]ˆ[)ˆ,ˆ(ˆ TT2 =−++∇    (44b) 
In boΩ , the rigid-plastic FEM with one layer of 

finite element is used, and the boundary conditions of 
forming problems are imposed on Γ  by using the 
rigid-plastic FEM, too. 
 
 
3 Analyzed Results of the Forging 

Process 
In this section, an axisymmetric forging problem (see 
Fig.1) is analyzed. Material constant g is taken as 0.007. 
Coulomb friction is used, and the friction factor is taken 
 

Workpiece 

 

 
R50

R115 

R90

65 91 

 
 

Fig. 1. Initial shape and dimensions of the workpiece and  
dies. 
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as 0.1. Forging velocity of the upper die is 0.0065m/s, 
and increment of time is taken as 0.1 s. The MLS 
approximation with the quadratic basis (m=6) is used. 
The nodal numbers n and  are taken as 9 and 4, 
respectively. 

en

Figs. 2, 3 and 4 show fields of the nodal velocity in 
the 10th, 16th and 20th computing step, respectively. 
As seen in these figures, the field of nodal velocity in 
the 20th computing step is similar to that in the 10th 
and 16th computing step. The nodal velocities of lower 
corner of the inner radius zone are small, and this 
corner is a dead metal zone. 

Figs. 5, 6 and 7 show contours of equivalent strain in 
the 10th, 15th and the 22nd computing step, 
respectively. As seen in these figures, the equivalent 
strains in the 22nd computing step are much larger than 
those in the 10th and 15th computing step. 

Figs. 8, 9 and 10 show contours of equivalent stress 
in the 10th, 16th and the 20th computing step, 
respectively. As seen in these figures and Figs. 5, 6 and 
7, the distribution of equivalent stress is similar to that 
of equivalent strain, and the equivalent stresses in the 
20th computing step are larger than those in the 10th 
and 16th computing step. 

Figs. 11, 12 and 13 show contours of shear stress in 
the 8th, 12th and the 15th computing step, respectively.  
 

 
 

Fig. 2.  Nodal velocity field in the 10th computing step. 

 
 

Fig. 3.  Nodal velocity field in the 16th computing step. 
 

 

 
 

Fig. 4.  Nodal velocity field in the 20th computing step. 
 

 
As seen in these figures, the distribution of shear 

stress in the 15th computing step is similar to that in 
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the 8th and 12th computing step. 
 
 
4   Conclusion 
In some point collocation methods, the positivity 
conditions of boundary points cannot be satisfied, so 
that it is possible to get large numerical errors from the 
boundary points. Specifically, the errors could arise in 
meshless analyses of metal forming problems which 
have complicated boundary conditions. By introducing 
a boundary layer of finite element in boundary domain 
of analyzed body, unsatisfactory issue of the positivity 
conditions of boundary points in the point collocation 
methods can be avoided, and the complicated boundary 
conditions can be easily imposed with the boundary 
layer of finite element. By making such an 
improvement, the hybrid PCM/FEM can be used for 
analyzing problems of metal forming effectively. In 
this paper, an axisymmetric forging process has been 
analyzed by using the point collocation method with a 
boundary layer of finite element, the nodal velocity 
field, the contours of equivalent strain and shear stress 
have been obtained successfully. 
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Fig. 5.  Contours of equivalent strain in the 10th  
computing step. 

 
 

Fig. 6.  Contours of equivalent strain in the 15th  
computing step. 

 
 

 
 

Fig. 7.  Contours of equivalent strain in the 22nd  
computing step. 
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Fig. 8.  Contours of equivalent stress (MPa) in the 10th  
computing step. 

 
 

 
 

Fig. 9.  Contours of equivalent stress (MPa) in the 16th  
computing step. 

 

 
 

Fig. 10.  Contours of equivalent stress (MPa) in the  
20th computing step. 

 
 

 
 

Fig. 11.  Contours of shear stress (MPa) in the 8th  
computing step. 
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Fig. 12.  Contours of shear stress (MPa) in the 12th  
computing step. 

 
 

 
 

Fig. 13.  Contours of shear stress (MPa) in the 15th  
computing step. 
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