
Newton's laws: background and limitations 
 

The italic is a translation of Newton's own words, the roman text is my 

paraphrasing. 

Newton's first law: Every body perseveres in its state of rest, or of 

uniform motion in a right line, unless it is compelled to change that state 

by forces impressed thereon. 

If the total force acting on a body is zero, then it travels in a straight line 

at constant speed. ie its velocity is constant and its acceleration is zero. 

Newton's second law: The alteration of motion is ever proportional to 

the motive force impressed; and is made in the direction of the right line 

in which that force is impressed. 

A nett force F accelerates a body in the direction of the force. To any 

body may be ascribed a scalar constant, its mass m, such that the 

acceleration a produced in two bodies by a given force is inversely 

proportional to their masses, ie, for a given F, a2/a1 = m1/m2. 

Newton's third law: To every action there is always opposed an equal 

and opposite reaction: or the mutual actions of two bodies upon each 

other are always equal, and directed to contrary parts. 

Forces always come in pairs, and the sum of the pair is zero. 

 

Newton's laws as equations 
If we write the total force acting a body as F, its mass as m and its 

acceleration as a, then we may write 

Newton's first and second law combined:    F = ma, 

where setting F = 0 gives the first law. 



As we've said, forces come in pairs that add to zero. For example, the 

force that I exert on my chair equals the force it exerts on me, or the 

gravitational force the earth exerts on the moon equals that exerted by 

the moon on the earth. Or, in general, for bodies 1 and 2, and for any 

interaction between them, 

Newton's third law:    F1,2 = - F2,1 ,     or     F1,2 + F2,1  =  0. 

For a body of finite size, one might ask what acceleration is meant. In 

this case, a is the acceleration of its centre of mass. We deal with this in 

one the centre of mass module on Physclips . We also deal with a more 

general version of Newton's laws in the modules on momentum and 

energy. 

Do Newton's laws apply? Inertial vs non-inertial frames 

In a naive or very general sense, it appears that Newton's combined first 

and second law, F = ma , does not always work. On a fairground ride 

such as a merry-go-round, or on a turning bus, unrestrained objects have 

unexplained horizontal accelerations. In other words, relative to the ride, 

the bus etc, we observe accelerations for which there are no forces. What 

is happening here? (This animation from our site on Relativity, frames 

of reference are discussed in more detail.) 

In the situation depicted here, if we neglect air resistance, both observers 

would agree that the ball, in flight, is subject to no horizontal forces. In 

the animation at left, Zoe, the observer on the merry-go-round, sees the 

ball accelerate in the horizontal direction, in violation of F = ma. In 

contrast, Jasper, the observer on the ground, sees no horizontal 

acceleration of the ball. He sees that the merry-go-round and the ball 

thrower are both accelerating due to their circular motion. So Jasper sees 

Newton's laws obeyed (to an excellent approximation), and explains 

Zoe's observation as due to the acceleration of Zoe's frame of reference. 

So, which is/are the frame/s of reference for which Newton's laws hold? 

Such frames are called inertial frames. Frames (such as Zoe's) in which 

http://www.animations.physics.unsw.edu.au/mechanics/chapter8_centreofmass.html
http://www.phys.unsw.edu.au/einsteinlight


Newton's laws do not hold are called non-inertial frames. Apart from 

conducting Newtonian experiments, is there a way whereby we may tell 

whether a frame is inertial or not? 

In fact there is: one looks at the distant stars. But this raises the subject 

of relativity, and the work of Galileo, Newton, Mach and Einstein. 

 

Do Newton's laws work for different inertial frames? 

To a level of approximation that is good enough for many experiments, 

the surface of the earth is an inertial frame. So Newton's laws apply, for 

example, on the platform of a railway station. Do they also apply to 

someone on a smoothly moving train? (Here, "smoothly moving" means 

not accelerating, which includes not turning and not bumping up and 

down.) 

Suppose that the train is moving at velocity v, as measured by a person 

at rest in the station. Let's give this observer the x,y coordinates shown. 

With respect to that coordinate system (at rest with respect to the 

station), let the position of the ball be r. With respect to a point at rest 

with respect to the train (the origin of the x',y' coordinates), let the 

position of the ball be r'. Note that we use the dash to indicate 

measurements with respect to the train (eg x', y', r'). Let the origin fixed 

in the train have position p, as measured from the station in the x,y 

frame. 

 



Now in the station frame, the velocity any point fixed in the train 

is v. Integrating with respect to time, its position r is given by 

r  =  r0 + vt , 

where r0, the constant of integration, is its position at t = 0. (To 

revise, see the introductory pages on Calculus and Vectors.) In 

particular, we can write 

p  =  p0 + vt. 

for the time dependent position of the origin of the reference frame 

on the train, as measured from the station. Now let's consider the 

position r of the ball, measured in the station frame, and r', its 

position measured in the train frame. The derivative of r with 

respect to time is the velocity in that frame, which we'll 

call u (remembering that we have already used v for the velocity of 

the train). And the time derivative of u is a, the acceleration in that 

frame. 

Now let's relate the measurements r and r' and their derivatives, 

remembering that r' is measured with respect to the x',y' frame. 

 

We assumed that, with respect to the station, the train is not 

accelerating, so the time derivative of v is zero. This gives us the 

important result 

a  =  a'. 

In other words, the two observers would obtain the same value for 

the acceleration of the ball. So, if the station is an inertial frame, 

then a = F/m, where m is the mass of the ball and F is the total 

force acting on it. 

http://www.animations.physics.unsw.edu.au/jw/calculus.htm
http://www.animations.physics.unsw.edu.au/jw/vectors.htm


If the two observers agree about the forces and agree about the mass, 

then they will have the same values of F and m, and we've shown that 

the both get the same value of acceleration: a = a'. So a frame of 

reference moving at uniform velocity with respect to an inertial 

frame is also an inertial frame. 

We have deliberately omitted mentioning one further assumption made 

above, and it has to do with taking time derivatives. We have tacitly 

assumed that the clocks in the two frames both measure the same time. 

If you did not notice this assumption, you are in good company -- it was 

largely unnoticed between the times of Newton and Einstein. However, 

this is one of the assumptions that must be considered when studying 

relativity. Which we do in the site on relativity. 

F = ma: Does it define F? define m? Is it a physical law? Can it 

possibly be all three? 

Let's start by observing that acceleration is measured in terms of length 

and time, which are defined independently of force and mass. 

The module on Constant Acceleration is a good place to start. 

 

F = ma really does define force 

and define mass. Either one of 

these seems at first glance to 

make it a tautology - something 

that is true by definition. And 

yet it is, as the name implies, a 

scientific law and therefore, in 

principle, falsifiable. 

In the module on Newton's 

Laws, whence comes the image 

at right, we explain how it can be all three. Consider a system for 

generating a force reproducibly, such as a wire carrying an electric 

current in a uniform magnetic field. We could use this to accelerate a 

collection of different objects. From the ratios of their measured 

http://www.phys.unsw.edu.au/einsteinlight
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accelerations, we should have the ratios of their masses, because their 

product, ma, is the same in each case. We could, if we wished, choose 

one of these objects as our standard mass, in which case we now know 

the masses of each object. Thus we can use F = ma to define 

the inertial mass. 

Now we could vary the force -- in our example, we could vary the 

current, the magnetic field, the length of the wire, or we could use totally 

different systems such as a spring or an electrical interaction to supply 

the force. We could use each different system of force production to 

accelerate the same mass. Measuring the acceleration now gives us the 

ratios of any pairs of forces, and gives a value for each force if we have 

chosen a standard mass. So yes, F = mareally does define F and ma, and 

does so independently. 

Finally, we could in principle falsify this law. If we have measured a 

number say nm masses and a number nF forces, as just described, then we 

have done nm+nF − 1 measurements. All possible combinations of 

masses and force cand give us nm.nF measurements of acceleration. For 

all of the new combinations, we have already measured F and m, so we 

can predict a, and see how it compares with the measured a. 

Further, as indicated in the sketch at right, we could take two similar 

masses (ie two masses that are accelerated at the same rate under the 

same conditions) and see whether they were together accelerated, by the 

same force, at half the rate. Finally, in every case we expect a to be 

parallel to F: any exception violates Newton's laws. So yes, F = ma is 

testable and, in principle, falsifiable. 

What is F? 

The concept of force is a useful way of quantifying how an object 

interacts mechanically with its environment and vice versa and it is 

introduced for that reason. If two large masses are close to each other 

and far from others, we observe that they accelerate towards each other. 

Hence we define a gravitational force and quanitify it. Analogous 



observations are made concerning the other forces. As we saw above, by 

definition, a (nett) force is what makes a mass accelerate. So, how to 

quantify it? 

We can measure the size and direction of forces using F = ma. We can 

also compare two forces by 'balancing them', by setting F1 + F2 = 0: total 

force is zero so there is no acceleration (in an inertial frame). For 

instance, when we weigh an object on a balance, we are often adjusting a 

magnetic force until it is equal to and opposite the weight of the object. 

(In practice, there are often levers as well.) In a very convincing and 

pragmatic way, such measurements tell us all most of what we know 

about forces. What we know from observation is how an object interacts 

with its environment. It may accelerate or not. 

Sometimes we can feel forces: we can feel, almost directly, contact 

forces against our feet or against our bums on chairs. In most cases, 

however, we don't feel or observe forces directly. Forces appear in our 

models, ie in our explanations. They are usually somewhat removed 

from direct observation. Because forces are often a little removed from 

observation, their description could be said, philosophically, to be 

somewhat arbitrary. 

 

In this picture (from a background page in electricity and magnetism, we 

explain the observation in terms of an electrical interaction, but that 

http://www.phys.unsw.edu.au/einsteinlight/jw/module2_EM.htm


explantion itself depends upon models for gravity and for the tension in 

strings. 

Sometimes forces are modelled as action at a distance and sometimes via 

fields (the two are logically almost equivalent). As we show in the 

module about energy, it is possible to make models that use distributions 

of potential energy and thus avoid the use of forces altogether. Again, in 

most cases, these different models are logically almost equivalent. (In 

the past, however, philosophers might have regarded these pictures as 

rather different: the Newtonian force picture looks like cause and effect, 

while the Hamiltonian energy picture looks more like purpose.) 

On the very small scale, forces are often analysed as the exchange of 

virtual particles. As a general rule, forces are less helpful as a model on 

the very small scale, in part because position, velocity and acceleration 

become poorly defined in that scale. See the uncertainty principle for 

more detail. 

What is m? 

Mass can have two different meanings, philosophically at least. Inertial 

mass mi is that quantity that resists acceleration. It is defined by 

mi = F/a. In a very convincing and pragmatic way, measurements of a in 

different conditions tell us what we know about inertial mass. 

Gravitational mass, mg, on the other hand, could be defined by 

mg = W/g, where W is the object's weight and g is the local gravitational 

field. 

Galileo's famous experiments, David Scott's version shown below, and 

some much more sophisticated and precise experiments since then 

demonstrate that mg and mi are proportional, and therefore may be set 

equal by a choice of units. 

However, there is no philosophical reason why Aristotle had to be 

wrong and Galileo right: as everywhere in science, only experiment and 

http://www.phys.unsw.edu.au/jw/uncertainty.html


observation tell us that. Philosophically, mg and mi could be different*. 

That the proportionality is not a coincidence is Mach's Principle. That 

the two are indistinguishable -- the principle of equivalence -- is a 

starting point for Einstein's theory of General Theory of Relativity, 

which is Einstein's theory of gravitation. 

* The Pioneer 10 and 11 space probes are now further from the sun than 

Neptune. The Pioneer anomaly is a tiny difference between the apparent 

acceleration of these deep space probes during the later stages of their 

trajectories and the acceleration calculated from the gravitational effects 

of planets, tidal effects, pressure of light against them and some other 

small effects. Some researchers think that this difference is due to 

calculation errors, others think that new physical principles are involved. 

Some have proposed that non-Newtonian mechanics may be required to 

explain the difference. 

Yes, but what is m really? 

Okay, so they are experimentally indistinguishable and perhaps 

identical. So what are they? What is this property of objects that resists 

acceleration? At the time of writing, this is not thoroughly understood. 

However, there are well developed theories of the origin of mass that 

will soon be put to experimental test. 

Many physicists suspect that an as yet undiscovered field, the Higgs 

field, plays a role in determining the mass of some fundamental 

particles. It is the particles' interaction with the Higgs field that would 

determine, in some cases, their masses. Associated with the Higgs field 

is a particle, the Higgs boson, which can only be created by energies that 

are just beyond the reach of nuclear experiments performed to date. 

The Large Hadron Collider at the Centre Européen pour la Recherche 

Nucléaire (CERN) was built in part to create* Higgs bosons and to 

measure some of their properties. We may know more about mass when 

and if "the Higgs" is discovered. However, even with out the Higgs, we 

can say something about the origin of mass. 

http://scienceworld.wolfram.com/physics/MachsPrinciple.html
http://scienceworld.wolfram.com/physics/topics/GeneralRelativity.html
http://www.nasa.gov/mission_pages/pioneer/index.html
http://en.wikipedia.org/wiki/Pioneer_anomaly
http://public.web.cern.ch/Public/Content/Chapters/AboutCERN/CERNFuture/WhatLHC/WhatLHC-en.html


If this theory turns out to be correct, then it will explain the mass of the 

electron but only a small fraction of the mass of the neutron and proton 

(which are a couple of thousand times more massive than the electron). 

In fact, most of the mass of neutrons and protons (and thus most of the 

mass of ordinary objects) is probably due to an effect that, while still 

exotic, is much better understood than the Higgs field. Many physicists 

suspect that most an ordinary mass m is just E/c
2
. Saying this is just a 

rearrangement of Einstein's famous equation E = mc
2
. Mass and energy 

are either interconvertible (via the very large conversion factor c
2
) or, for 

some theorists, the same thing. Quantum chromodynamics (QCD) 

analyses how the 'ordinary' nuclear particles such as neutrons and 

protons are made from quarks, which interact via the chromoelectric 

field carried by gluons. (There is a limited analogy here with quantum 

electrodynamics, which analyses how protons and electrons interact via 

the electric field carried by photons.) 

According to QCD, nearly all of the mass of neutrons, protons and most 

nuclear particles is due to the energy of the different distributions of 

quarks and antiquarks which, because of quantum uncertainty, cannot 

ever cancel out each other's colour charge completely. (See E = mc
2
, 

Energy in Newtonian mechanics and in relativity and the uncertainty 

principle for further background). 

Exactly how this works is not known. The energies depend on how 

quarks and gluons are confined, and QCD itself does not give a scale for 

confinement -- currently, this is introduced empirically. Perhaps this 

scale comes from the Higgs field interaction too. Some suspect that it 

may have something to do with dark matter. This may be resolved fairly 

soon. Nevertheless, it seems very likely that most of your mass is in fact 

the energy stored in neutrons and protons in the different configurations 

of their quarks and gluons. 

Of course that doesn't tell us what energy is. Physclips has a module on 

energy, but there we relate it to forces, so, while I think that the module 

does tell a lot about energy, you might justifiably accuse me of circular 

http://scienceworld.wolfram.com/physics/QuantumChromodynamics.html
http://www.phys.unsw.edu.au/einsteinlight/jw/module5_equations.htm
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reasoning if I claimed that this settled the matter. Further, QCD doesn't 

tell us the mass of the electron and it doesn't account for quite all of the 

mass of neutrons and protons either. Some readers may be helping here: 

if you pay taxes in Europe, then you are helping fund the Large Hadron 

Collider and thus the search for the Higgs boson. 

Nevertheless, we can put particle physics aside and say that mass (and, 

at least to some extent, its other self, energy) are defined by Newton's 

second law, in one of its forms. Hence my perseverence in showing that 

F = ma really can define mass and force, as well as being a testable law. 

And if you find this unsatisfying, it's worth noting that there will always 

remain departure points in physics, just as there are postulates or axioms 

as the departure points in mathematics, just as there are postulates or 

axioms as the departure points in mathematics. 

* So, how do you create a Higgs boson? The LHC will accelerate two 

beams of either protons or lead nuclei in opposite directions in storage 

rings 27 km long. At speeds of about 99.99999% of c, they will collide. 

Much of their kinetic energy will be converted into particle-antiparticle 

pairs. Including sometimes, it is hoped, the elusive (and massive) Higgs. 

It's a big project. For instance, the LHC needs 100 tonnes of liquid 

helium just to keep the magnets cool. 

What if m varies? 

Usually, there is a tacit assumption in F = ma that m is constant. We 

weigh an object (determine its mg) or we accelerate it (determine its mi). 

Then repeat the measurement. Are they the same? Perhaps not. If it were 

a glass of water, some water may have evaporated. If a piece of metal, 

the layer of metal oxide on the surface may have increased. (My mass is 

changing as I write this because the breath I exhale is slightly more 

massive, on average, than the breath I inhale -- the CO2 and H2O I 

exhale more than make up for the O2 I inhale.) Even if there are no 

chemical changes, there may be nuclear changes: like you, I am very 



slightly radioactive and lose mass that way. (Gee, I'm getting hungry just 

thinking about all this loss of mass!) 

What, then, if mass varies? In this case, we use the more generalised 

version of Newton's first and second laws, using the definition of 

momentum p = mv. We then write Newton's first and second laws thus: 

 

which of course reverts to the familiar F = ma for constant mass. We 

discuss this in the module on momentum. In very many cases, the 

second term is negligible. Keep in mind, however, the possibility that 

you may need the equation above in some cases. 

Newton's third law 

The simple versions of this law were given above: 

To every action there is always opposed an equal and opposite reaction: 

or the mutual actions of two bodies upon each other are always equal, 

and directed to contrary parts. 

Forces always come in pairs, and the sum of the pair is zero. 

In the module on momentum, we introduce a more general law that 

includes all three of Newton's laws: it is the law of conservation of 

momentum: 

In no external forces act on a system, its total momentum is conserved. 

This more general law is, so far as we know, completely true. There is 

even an odd sort of argument that suggests why it should be true: 

see Newton's third law and the anthropic principle. However, just as F = 

http://www.animations.physics.unsw.edu.au/mechanics/chapter9_momentum.html
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madoes not apply if m is not constant, we should point out that Newton's 

third law does not apply if some effects are omitted. 

For instance, if we consider the magnetic interaction between two 

moving charges, in the general case the forces do not add to zero. In 

such cases, relativistic effects and the momentum of radiation caused by 

accelerating charges must be included. 

Conclusion 

Before leaving Newton's laws, we should repeat the points made above. 

First, Newton's laws (expressed in terms of forces rather than energies) 

are not readily applied on the very small scale: As one goes to extremely 

low energies on the atomic scale, position and acceleration are not well 

defined, because of the the uncertainty principle. We should add, too, 

that relativistic effects complicate the dynamics at high speeds and high 

energies (see Energy in Newtonian mechanics and in relativity for a 

discussion). 

These caveats made, however, we note that, on the macroscopic scale 

and over the vast range of practical energies and forces, Newton's laws 

work spectacularly well and are the foundation of a large fraction of 

physics and engineering. And, if you are going to work on the scale of 

very small or very high energies, then you'll simply have to learn some 

quantum mechanics and some relativity -- which will be fun, too! At the 

end of the chapter on mechanics, there is a section in which we 

are quantitative about the limits to Newtonian mechanics. 

Puzzle: what to tell that horse? 

http://www.phys.unsw.edu.au/jw/uncertainty.html
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Remember the problem in the 

multimedia tutorial? The man 

says to the horse "Giddup" 

(which is horse for "go"). The 

horse replies: "There's no point. 

Newton's third law says that the 

cart will exert a force on me 

equal and opposite to the force I 

exert on it. Sum of forces = zero, 

so the acceleration will be zero." 

How would you answer the 

horse? 

The horse is correct in that the 

two forces shown do indeed add 

to zero. However, these 

are internal forces. (The sum of 

internal forces in a system is always zero.) To determine the acceleration 

of the horse+cart system, we need to look at the external forces acting 

on it. Can you see what they are in this case? 

 

 

 

Source: http://www.animations.physics.unsw.edu.au/jw/Newton.htm 


