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Abstract—Monte Carlo (MC) simulation is extensively 
used for solving thermal radiation problems in high-
temperature environments, such as combustion chambers 
and furnaces, and irregular-geometry enclosures 
containing participative media such as combustive gases. 
The quantities of interest are surface radiosities and 
subsequent radiative heat fluxes which have been 
accurately determined by MC in configurations which are 
challenging for deterministic formulations. The 
attractiveness of MC schemes becomes more prominent in 
mixed-mode and coupled thermo-fluid problems, where 
the non-linearity, spectral characteristics and geometrical 
complexity may render deterministic treatments largely 
ineffective. This work deals with thermal radiative 
estimates for hot grey diffuse surfaces and grey 
participative media. Simple test-configurations are 
considered for which exact solutions are available and MC 
simulation is used to make validation comparisons. We 
also consider the analog simulation process to compute 
sensitivities of independent parameter variations, such as 
material density, in a single simulation. Such a capability 
increases the applicability of MC methods to optimization 
studies as easily as deterministic methods based on 
variational schemes. 

 
 

Index Terms— Mixed-mode heat transfer, Monte Carlo 
simulation, participating media, Stochastic sensitivity, Thermal 
radiation. 

I. INTRODUCTION 
ONTE CARLO (MC) simulation has been extensively 
used for solving thermal radiation problems in high-

temperature environments including combustion chambers 
and furnaces, and irregular-geometry enclosures containing 
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participative media such as combustive gases. Surface 
radiosities and subsequent heat fluxes have been accurately 
determined in configurations which are difficult for 
deterministic formulations. The attractiveness of MC schemes 
becomes more prominent in mixed-mode and coupled thermo-
fluid problems, where the non-linearity, spectral 
characteristics and geometrical complexity may render 
deterministic treatments largely ineffective. 

This work deals with thermal radiative estimates for hot 
grey diffuse surfaces and grey participative media. Simple 
test-configurations are considered for which the exact 
solutions are available and MC simulation is used to make 
validation comparisons. We consider two problems viz (i) a 
two-surface source-sink infinite configuration, and (ii) an 
enclosure with fixed-temperature surfaces. 

Three methods -- an electric circuit analogy model, a 
deterministic integral formulation, and a Monte Carlo 
simulation model -- are used to estimate the radiative heat flux 
and in some cases, the temperature distribution. 

The MC simulation is based on tracking the history of 
bundles of photons from ‘birth’, as emitted photons, to ‘death’ 
when they are absorbed at a surface or within a participative 
medium. We consider the accuracy and precision of MC 
estimates as a function of the number of photon bundles 
sampled and the radiative properties of surfaces. Surface 
radiosities are determined from surface irradiations in 
scattering events. The accuracy of MC estimates, known to 
depend strongly on both the geometry and emissivity, is 
quantified for the test configurations. From this, we are able to 
obtain estimates of the required sample size for simulation. 
Similarly, the emissivity data for surfaces determines the 
events in a history. Strong absorption at a surface, for 
example, terminates a history before it makes a ‘significant’ 
contribution to a tally of interest at the other surface. Such an 
‘analog’ MC simulation is bound to give significant errors and 
hence requires modification by one or several methods. 

In the last part of the paper, we consider sensitivity 
capabilities of MC simulation to obtain perturbations in 
estimates of radiative heat flux due to independent variation in 
material properties. For this, improvement strategies such as 
artificially altering, or biasing, the underlying probability 
distribution function (PDF) to force more events in the 
simulation and ‘correct’ the statistical tally are demonstrated 
to give a ‘better’ estimate. The simplicity of the test 
configurations allows us to write simple terms for the 
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probabilities of events based on the multiple scattering of 
photons from surfaces. We are thus able to quantify the effect 
of such a technique in a simulation of a simple configuration 
and to infer on the validity of such a scheme in complex 
problems. It is anticipated that this work will demonstrate 
ways of obtaining better MC estimates more efficiently, i.e. 
without excessive computational effort, and will be extended 
to non-grey surfaces and participative media. 

II. DETERMINISTIC AND STOCHASTIC METHODS 

A. The Electric Circuit Analogy Method 
In an elementary deterministic “circuit diagram” analogy, 

the net heat flow can be expressed [1], [2] as  
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and an “overall” flow between surface 1 and 2 can then be 
written as 
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where the resistances are given by  
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Here, the view factor F12 is 
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where DbYDaX /,/ ≡≡ (a, b are length and width of 
plates respectively and D is the distance between the plates). 

B. Integral Formulation 
We can also write an integral equation for the net heat flux 

in a gray, diffuse enclosure is [2],[3] as 
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For two surfaces of length a, width b separated by distance D 
two equations can be written from Eqn.(5). For coordinates x1 
and x2 are taken along the surfaces and using 
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, the differential view factors can be found. The thermal flux 
equations, for isothermal surfaces, are then: 
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Consider now the integral formulation for a participating non-
scattering medium between parallel plates. The integro-
differential equation is [3] 
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where the source term is given by 
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If the source function is known, equation (7) can be integrated 
and the intensity can be found as 
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where '
ητ  is the optical coordinate. We consider the simple 

cases of two infinite plane surfaces with a non-scattering 
participating medium. We assume that collisions in the 
participating medium are all absorptions and an absorption 
results in a blackbody emission [2]. Writing the angular 
dependence explicitly, equation (8) is 
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and separating the forward and backward components of the 
intensity )0,( >+ μtI and )0,( <− μtI we can write the 
radiosities from surface 1 and surface 2 as 
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The above quantities can be used to find the forward and 
backward intensities in the medium ),( μtI + and 

),( μtI − respectively. From these, the forward and backward 

fluxes )(tq + and )(tq − respectively can be found, and the 

net flux )()()( tqtqtq −+ −≡ . From the steady-state energy 
equation, for conduction of thermal radiation, we know 
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that 0/ =dtdq . Using Leibnitz’s Rule and relationships for 
exponential integral functions 

∫ −= −
1
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and defining non-dimensional quantities for the temperature 
field and the radiative heat flux as 
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The quantities above, *
be and *q can be found by solving the 

integral equations (11); however to find the unknowns, )(teb  
and q require that the surface radiosities are known. If the 
surface temperatures only are known, then the radiosity terms 
have to be replaced by the known quantities. This is achieved 
from the relations. The final results are then: 

                  
)211(1

1)(
)(

21

*

*

2

2*

2,1,

2,

−++

−
+

=
−

−

εε

ε
ε

q

qte

ee
ete b

bb

bb ,          (12) 

and 

                          
*

2

2

1

1

2,1,
*

11
1

)(

q

eeq
q bb

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+

−
+

−
=

ε
ε

ε
ε

.              (13) 

C. Monte Carlo Simulation 
We now consider a simulation method based on following 

the photons as they travel from birth to their final destination. 
The Monte Carlo (MC) simulation [2],[5] consists of sampling 
“source” bundles from one surface and transporting them to 
their final destination using laws of probability. A simulation 
of N histories involves the following steps for a history 

i. Specification of the source emissive power. 
ii. Selection of emission angles θ and φ. 
iii. Ray tracing in the direction of propagation. 
iv. Determination of point of intersection, if 

any with the destination surface. 
v. Determination of fate of history at the 

destination surface. 

The vector of propagation
^
S  is related to the unit vectors 

21 ,
∧∧

tt and 
∧

n .  In the direction
^
S , the point of intersection 

Q can be found as follows: The sample size is determined 
from the emitted energy of a surface, 

4TAeAE b εσε ≡=  Watts. One selects N bundles, each 

bundle having energy ω such that NE ω= . In case of two 
surfaces, the energy per bundle can be kept constant so that
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The polar and azimuthal angles θ and φ respectively are 
then determined as )(sin 3

1 ξθ −= for a diffuse surface 

emitter, and 42πξφ = . On intersection at Q, a scattering is 
chosen with probability ε−1 and thus 

εξ −≤< 10 5 determines a scattering whereas 

11 5 ≤<− ξε  corresponds to an absorption. In case of 
scattering, new angles θ φ are determined and the process 
continues until the history is terminated on absorption. The 
quantity of interest in the problem is the energy exchange or 
equivalently, the difference between the energy emitted from a 
surface and absorbed by that surface.  

This can indeed be generated to an N-Surface configuration 
+
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and includes the “self-contribution” Fijqqi
+ which may be non-

zero for a re-entrant surface. The quantities of interest are q+ 

and q- which are determined with ε, eb specified in the 
material data. Tally counter counts are updated each time a 
surface absorption, or emission takes place. Since the present 
configuration consists of gray surfaces, a spectral index is not 
required.  
The configuration considered in the following analysis has 
two black surfaces with a gray participating medium which 
has both absorption and scattering. The analysis leading to the 
expressions in the previous section for a purely absorbing 
medium also apply here, as scattering is taken to be an 
emission resulting from absorption in the participating 
medium. For simplicity, surface ‘2’ is considered to be a zero 
temperature so that it does not emit any photons. The number 
of photon bundles started from surface 1 is 1,wN and the 

energy per bundle is 

1,

1
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1
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The normalized heat flux *q is estimated from the number 
of photon bundles emitted from surface ‘1’, and the number of 
photon bundles absorbed by each of the surfaces 2,1, , ww SS as  
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from which, using a uniformly random number in the range 
(0,1) for the CDF, a distance to collision DTC, can be sampled 
as 
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 Alternately, in units of optical distance, also called the optical 
depth, sKt t= , the mean optical path is then 1>=< t . 

III. RESULTS 
For the first validation exercise, we consider two parallel 

plates of dimensions 1m X 1m. The “exact” radiosity vales are 
obtained from the circuit diagram method and compared with 
MC simulation. Tables 1a and 1b shows the results from both 
methods for different sample size in MC computations. 

 
TABLE 1A 

 CASES CONSIDERED FOR COMPARISON OF NET RADIATIVE HEAT FLUX FROM 
ELECTRICAL CIRCUIT ANALOGY AND MC ANALOG SIMULATION METHODS. 

T1 T2 D Case Nb,N1,N2
 

(K) (K) 
ε1 ε2 

(m) 
Set A          Qnet=0 
A1 10,103,103 2000 2000 1.0 1.0 1-5 
A2 10,103,444 2000 2000 0.9 0.4 1-5 
A3 10,103,111 2000 2000 0.9 0.1 1-5 
Set B          Qnet=0 
B1 10,103,103 2000 2000 1.0 1.0 0.1 
B2 10,103,444 2000 2000 0.9 0.4 0.5 
B3 10,103,111 2000 2000 0.9 0.1 1.0 
Set C          Qnet= 60.2 kW, 9.48 kW, 2.61 kW 
C1 10,103,7 2000 1000 0.9 0.1 1.0 
C2 10,103,7 2000 1000 0.9 0.1 5.0 
C3 10,103,7 2000 1000 0.9 0.1 10. 
Set D          Qnet=10.1 kW, 10.1 kW 
D1 10,103,0 2000 500 0.9 0.1 5.0 
D2 10,103,0 2000 250 0.9 0.1 5.0 
D3 10,103,0 2000 125 0.9 0.1 5.0 
 
Here, Nb, N1, and N2 are the batch size and the number of 
photons started from isothermal surfaces 1 and 2 at 
temperatures T1, T2 and emissivities 21 ,εε respectively. Table 
1.a. shows four sets of configurations (A, B, C and D) 

arranged in order of complexity. Set A has no net radiant 
transfer and touching surfaces, so that all started particles 
contact with the ‘other’ surface and ensure ‘good’ statistics. 
The number of photon bundles started at surface 1 (N1) is 
chosen arbitrarily while N2 is calculated from the condition 
requiring constant enrgy per bundle: 21 ωω =  as described 
above. Set D is taken to be the ‘worst’ case in which the 
statistics is expected to be poor. For the configurations given 
in Table 1.a., the radiosity of each surface is computed using 
the exact the expression (Eqn. 1) and the MC simulation 
described in Section II, and listed in Table I.b. The results for 
the MC estimate show the mean value along with the standard 
deviation. 
 

TABLE 1B 
 RADIOSITY COMPUTATIONS FOR CASES CONSIDERED FOR COMPARISON OF 
NET RADIATIVE HEAT FLUX FROM ELECTRICAL CIRCUIT ANALOGY AND MC 

ANALOG SIMULATION METHODS. 
 

Case Exact 
Radiosity MC Radiosity 

 q1
+ q2

+ q1
+ q2

+ 

A1 9.07e5 9.07e5 9.07e5 9.07e5 
A2 9.07e5 9.07e5 9.07e5±1.11e3 8.96e5±1.5e4 
A3 9.07e5 9.07e5 9.07e5±8.65e2 8.99e5±7.0e4 
B1 9.07e5 9.07e5 9.07e5±8.6e0 9.07e5±1.49e1 
B2 9.07e5 9.07e5 8.40e5±1.1e3 5.72e5±1.97e4 
B3 9.07e5 9.07e5 8.21e5±3.3e2 2.38e5±2.47e4 
C1 9.00e5 5.99e5 8.19e5±5.5e2 1.77e5±2.96e4 
C2 9.06e5 1.42e5 8.16e5±4.2e1 1.45e4±9.75e3 
C3 9.07e5 8.02e4 8.16e5±2.7e1 7.14e3±2.94e3 
D1 9.06e5 9.41e4 8.16e5±3.6e1 7.7e3±7.35e3 
D2 9.06e5 9.12e4 8.16e5±2.7e1 4.43e3±4.87e3 
D3 9.06e5 9.09e4 8.16e5±3.6e1 5.14e3±5.73e3 
 
For the integral equation without a participating medium, 

we convert the integrals (equations 6) to an Nth order 
Gaussian quadrature scheme  
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using the transformation 
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The system of equations is bqA = . In this second-order 

Gaussian quadrature scheme, the weights are 121 == ww , 

and the evaluations are made at
3

1
21 =−= tt . We obtain 

the normalized heat fluxes given in Table 2. 
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TABLE 2   
NORMALIZED HEAT FLUXES 

(W/H=1, 1T = 2T =1000 K) 

)(
~

4
11 T

qq i
i σε≡  

1ε  2ε  
)(~

11 tq  )(~
21 tq  )(~

12 tq  )(~
22 tq

0.
1 

0.1 0.9388 0.9775 0.9388 0.9775 

0.
2 

0.2 0.8825 0.9564 0.8825 0.9564 

0.
5 

0.5 0.2341 0.1210 0.2070 0.0515 

0.
9 

0.9 0.5900 0.8407 0.5900 0.8407 

 
The results of Table 1.a. show that for Set A, the first test 

case represents two black surfaces, with same temperatures 
touching each other with 10 batches consisting of 1000 
histories from each surface, the MC results match the exact 
results. The standard deviations are zero in this case, as is the 
net heat flux. All the “single event” histories consist of 
absorptions, no scatterings and no losses. In this sense, it is 
the easiest of the cases for a MC simulation. As the emissivity 
of the second surface decreases, the number of absorptions on 
this surface also decreases resulting in an increase in the error 
and in the standard deviation. The third run in Set A confirms 
the trend. 
Set B is intended to quantify the error in the MC simulation 
due to a decrease in the view factor of the surface and hence 
an increase in the number of lost bundles. The accuracy of the 
lower emissivity surface drops due to the smaller sampled 
source as well as to the smaller number of absorptions on the 
second surface. The sharp decrease in the accuracy of the MC 
estimate for the third case in Set B is due to the lower 
emissivity of the second surface, and hence the smaller 
sample, and the larger loss term. In fact, out of 1111 photon 
bundles, the surface absorptions were 54 and 20 on surfaces 1 
and 2 respectively while 1037 (93.34%) got lost. For this 
problem, the view factor is about 0.2 so that the about 80% of 
the emissions would be expected lost from the direct source. 
Set C considers difficult configurations for an MC simulation 
in which the photon energy per bundle is kept constant. In 
fact, the first case of this set results in 32 and 23 absorptions 
on surfaces 1 and 2 respectively while 948 are lost (94%) 
compared with a view factor of about 0.2. The second case of 
this set has 0.3 and 1.2 surface absorptions respectively or 
1.5% of the total while the view factor is about 1.2%. In the 
third case, the radiosity estimates are almost completely due to 
the emissions rather than from the interaction between the 
surfaces, which has reduced the net power exchange to only 
2.61 kilowatts. Finally, Set D is the worst case for an MC 
simulation based on the current strategy of constant bundle 
energy. 
The results of the deterministic integral formulation, as shown 
in Table 2 do not have any associated uncertainty other than 
the numerical error in the quadrature approximation but have 

the disadvantage that the quantities of interest are found at 
specific points only. 

IV. APPLICATIONS 
The engineering applications of radiative flux in furnaces and 
2-D and 3-D enclosures, have been obtained by MC 
simulations and validated experimentally, (see e.g. [4]). 
The work is also extensively used for studying the effect of 
Thermal Barrier Coatings (TBC) which are used to reduce the 
heat flux on a surface so that it may perform according to the 
requirements. In an engine, for example, a 150 μm thick 
coating of yttria stabilized zirconia coating can cause a 
temperature drop of 170 C. Similarly, converging-diverging 
nozzles can be protected by similar TBCs. 

The surface flux in a combustion chamber, for example, can 
be found here using the integral formulation with a 
participating medium. We consider two parallel plates of 
given temperatures and emissivities, separated by a non-
scattering medium. The temperature field 

))(()( TeftT b= between the plates and the net radiative 
thermal flux q  can be determined, for which the exact results 
are given by equations (12) and (13). Table 3 shows the 
design requirement for cooling rate required to keep surface 2 
at the prescribed temperature. This will remove the heat found 
as the net thermal radiative flux. Surface 1 is thus a ‘source 
condition’ while surface 2 represents a sink. The engineering 
design problem can be to find the material corresponding to a 
specified absorption coefficient if plate spacing is fixed, or 
alternately to find the plate spacing if the material is given. 

 
TABLE 3 

 COOLING RATE* )( cQ REQUIRED TO KEEP SURFACE 2 AT THE TEMPERATURE 

2T K. 

Surface 1 Surface 2 Opt.Th. q  

1T /K 1ε  2T /K 2ε  LKt a≡  

*q  
2. −cmW  

2000 0.1 400 0.9 0 1.00 8.47 
2000 0.1 400 0.9 2.5 0.34 7.52 
2000 1.0 0 1.0 2.5 0.34 30.85 

 
TABLE 4 

 MONTE CARLO SIMULATION ESTIMATES FOR THE NON-DIMENSIONAL 

RADIATIVE HEAT FLUX 
*q  

 
Physical *q  

L,W,Z 
(m) 

sa KK ,  
cm-1 1,wN  MC 

(MCTR.m)* 

Reference 
Case 
(no 
scattering) 

1,1,0.25 0.06,0.04 105 0.3404 0.3401 
1,1,0.25 0.03,0.02 105 0.5002 0.5000 
1,1,0.25 0.015,0.010 105 0.6587 0.6800 
1,1,0.25 0,0 105 0.9997 1.0000 
*MATLAB® program written 
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In the first case, the two black surfaces are at 2000 K and 0 K 
respectively. They have a surface area each of 1 m2 and are 
separated by a distance 0.25 m. In the absence of a 
participating medium, the net heat flow is 4

12 ATF σ = 57.335 

W/cm2. With a participating medium 106.0 −= cmK a  
104.0 −= cmK s , and 5.2=Lt , *q =0.34 [2] and 

85.304*
1,

* === ATqeqQ b σ W/cm2.  

Notice that the view factor (0.6320 in this case) does not enter 
the calculation. The MC estimate with the isotropic scattering 
and isotropic re-emission simulation, in Table 4, gives 

*q =0.3404 and hence the same heat load of 30.85 W/cm2. 
The accuracy of the estimates as a function of the number of 
batches BN and the number of photon bundles simulated per 

batch PN is listed in Table 5. 
 

TABLE 5 
 ACCURACY OF MONTE CARLO SIMULATION ESTIMATES FOR THE NON-

DIMENSIONAL RADIATIVE HEAT FLUX WITH THE NUMBER OF INDEPENDENT 
BATCHES AND PHOTON BUNDLES SIMULATED 

04.0,06.0 == sa KK CM-1 

S.No 
BN  PN  >< *q  *q

σ  

1 10 10 4.5000e-001 1.5652e-001 
2 10 100 3.3300e-001 4.1243e-002 
3 10 1000 3.3710e-001 1.5764e-002 
4 10 10000 3.4084e-001 4.3502e-003 
5 10 100000 3.4098e-001 1.4154e-003 
6 20 100000 3.4040e-001 1.4415e-003 

 
The present analysis can be applied for such situations to 

determine the effectiveness of candidate TBCs. including 
metals, semiconductors and dielectrics which can be used. 

V. MC SENSITIVITY 

A. Material Perturbations 
To study the effect of material perturbation, we consider cases 
in which the independent parameters sa KK , are varied. Such 
work has been included in MC simulation for neutrons and 
photons, for example, in production codes such as MORSE 
[6] and MCNP [7]. The theory was demonstrated  by Rief [9] 
and extended and applied in nuclear fusion reactor design 
sensitivity studies (see e.g. [10],[11. 
In order to get some idea of the magnitude of change in the 
net heat flux due to a material perturbation, we carry out full 
re-runs when aK alone is varied. The MC tallies are shown in 
Tables 6a and 6b. 
 

TABLE 6A 
 MONTE CARLO SIMULATION ESTIMATES (RE-RUNS) FOR THE CHANGE IN 

RADIATIVE HEAT FLUX DUE TO A PERTURBATION IN THE MATERIAL 

ABSORPTION; BASE CASE 04.0,06.0 == sa KK CM-1, (1000X10) 

aKδ  
(%) 

No. of 
Absorptions 
in Medium 

No. of 
scatterings 
in Medium 

tt /δ  
(%) 

** / oqq ><δ  
(%) 

-20 23815 19910 -12.0 
(2.2) +8.5 

-10 26764 19692 -6.0 +3.7 
0 29935 19857 0 0 

10 33320 20232 +6.0 -4.0 

20 35866 20051 +12.0 
(2.8) -7.0 

 
 

TABLE 6B 
 MONTE CARLO SIMULATION ESTIMATES (RE-RUNS) FOR THE CHANGE IN 

RADIATIVE HEAT FLUX DUE TO A PERTURBATION IN THE MATERIAL 

SCATTERING; BASE CASE 04.0,06.0 == sa KK CM-1, (1000X10) 

 

sKδ   
(%) 

No. of 
Absorptions 
in Medium 

No. of 
scatterings 
in Medium 

tt /δ  
(%) 

>< *qδ  
(%) 

-20 30551 16397 -8 
(2.30) 

+6.4 

-10 29759 17979 -4 
(2.40) 

+2.9 

0 29935 19857 0 
(2.50) 

0 

10 29526 21661 4 
(2.60) 

-2.8 

20 29138 23333 8 
(2.70) 

-4.7 

The thermal radiative transfer formulation is very similar to 
the neutron and photon transport as it based on the integral 
form of the Boltzmann equation. Traditionally, MC simulation 
is seen to be analogous to the Neumann series solution of the 
governing integral equation. Thus, we consider an idealized, 
extensively studied, 1-D slab transmission problem for which 
the exact solution is readily available (see e.g. [8]). 

A simple demonstration of the perturbation method will be 
made by way of the slab transmission probability problem. A 
mono-energetic beam of photons is incident on the left side of 
the slab for which 04.0,06.0 == sa KK cm-1, and the 

optical thickness is zKt t= . For infinite parallel plates, the 
governing integral equation (Volterra equation of the second 
type) given above 

∫
−

+−=
t

b
dttttItItI

0

''
' )exp()()/exp(),0(),(

μμ
μμμ  

is considered, for the case of forward scattering i.e. 
)1( −μδ and, initially, for a simpler model described by 

≡−+−= ∫
t

b dttttItItI
0

''' )exp()()exp()0()(  

''

0

' )exp()()( dtttptItS s

t

−+ ∫  

Mathematically, the integral equation can be solved by the 
Neumann series method as follows:  assume initially that 
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tetStItI −=≅≡ )()()( 0 , use this in the integral equation 
to get 

∫ ∫ →+≡+= −−
t t

tt dtttKtSedtetStI
0 0

11111 )()()()( and 

use )(1 tI  to get a ‘better’ solution 

∫ ∫ ∫∫ →→+≡+= −−
t t t

t
t

t ttKttKtSdtdtedtdtetStI
0 0

2211
0

21
0

212 )()()()()(
11

and so on.  
The Neumann series analytical solution to the above can 

then be written as  

∑
∞

=

− +=
1

)()0()(
n

n
t tIeItI  

where

∏∫∫ ∫
−

=
+→→=

− 1

1
1

0 0 0
21 )()()(

1 1 n

i
ii

t t t

nnn ttKttKdtdtdttI
n

ΛΛ

In the above, the transition kernel )( 1+→ ii ttK can be 

written as a ‘collision’ term isi pC ,= , the scattering 

probability at the thi collision, and a ‘transport’ term 
)(

1
1)( ii tt

ii ettT −−
+

+=→ which transports the particle to the 
thi )1( + collision site. Thus the transition kernel is 

iiii TCttK ⋅=→ + )( 1 where it is understood that iC carries 
the pre-collision statistical ‘weight’ and properties of the 
particle, and iT carries the post-collision information. This 
formulation, as will be shown in subsequent work, makes a 
perturbation analysis straight-forward. We can also attempt to 
write down a formulation for the stochastic process in which 
the random walk is treated in an analog manner with the only 
exception of allowing a particle to continue its ‘history’, or 
life, with a reduced ‘weight’ (equal to the pre-collision 
survival probability) even though it may actually have been 
absorbed. The complete set of events for a collision density or 
a transmission problem, whose probabilities must add up to 
unity, is then the contribution from events with zero 
collisions, with one collision, with two collisions and so on. 
When these are written, we will at once see the significance of 
the Neumann series solution which proceeded on purely 
mathematical grounds. The probabilities can be written as: 

T
T eTP −=)|0(  

TedyeeedyTP T
T
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The exact solution for the collision density and the 
transmission probability can then be found as 

∑
∞

=

−− ==
0

)/(

!
)(

n

tKK
n

tn tae
n
teptψ and 

TKK taeTJ )/()(( −= respectively. Since 

zKt t≡ and ot ZKT ≡ , )exp()( zKt a−=ψ , and 

)exp()( oa ZKTJ −= , and the change in each quantity due 

a material change tKδ has an exact 

solution tKzδψδψ −=/ and 

to KZJJ δδ −=/ respectively. Following a simulation, the 
estimator for a first derivative for ψ is then obtained as 

>
⎭
⎬
⎫

⎩
⎨
⎧

+−>≅<< p
p
nt

t
np n δδδψ )1( where the estimate is 

obtained in a single ‘run’. To test the accuracy of this 
estimate, we carry out simulations in the following stages: 
 

i- carry out a simulation to estimate 

><>< ψσψ , and ><>< JTJ σ,)(  

ii- compare above with exact results 
iii- construct a PDF, >< )|( oZnP and compare 

with a Poisson PDF 
iv- carry out full re-runs for a specified 

tt KK /δ (±5%,±10%) 
v- show changes in Poisson PDFs for the material 

perturbation 
vi- use the estimator in a single run to ‘predict’ 

changes in >< δψ  
The MATLAB® program MCslab.m was used for 

simulation, construction of a PDF from the simulation for the 
transmission through the last surface, and for comparison with 
the exact analytical solution for the collision density obtained 
from the integral equation. 

The figure below shows a simulation for a slab of 
10=t (optical thickness) with 20 regions, i.e. 0.5 optical 

thickness each. Since 1>=< t , the probability of having a 
collision in a region is small and the CE is bound to give an 
inaccurate result. This is illustrated in the figures below for a 
sample size of 1000X5. The discrepancy remains even as the 
sample size is increased to 100000X5. However, the results 
improve as the size of the regions is increase from 0.5 to 1.0 
optical units. For the CE to provide reliable results in an MC 
simulation, the size of the region, or mesh in a deterministic 
analogy, must be larger than an optical unit. In case the mesh 
size can not be increased, the track-length estimator (TLE) 
should be used instead of the CE. 



International Journal of Mechanical & Mechatronics Engineering IJMME Vol: 9 No: 9                - 228 - 

1940091 IJMME-IJENS @ International Journals of Engineering and Sciences IJENS 

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1
Collision Density (1000 X 5)

Optical Thickness  t

C
ol

lis
io

n 
D

en
si

ty
 ( ψ

) MC
exact

-2 0 2 4 6 8 10 12 14 16 18
-0.05

0

0.05

0.1

0.15
Probability Distribution Function  (1000 X 5)

No. of collisions  n

P
D

F(
n|

t)

MC
Poisson

 
Fig.  1. Monte Carlo simulation, 1000 particles and 5 batches, for a 1-D slab 
of thickness 10 optical units, with forward scattering and 20 regions. 
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Fig. 2. Monte Carlo simulation, 10000 particles and 5 batches, for a 1-D slab 
of thickness 10 optical units, with forward scattering and 10 regions. 

 
As discussed above, the estimator for a first derivative for ψ  
is obtained as 

>
⎭
⎬
⎫

⎩
⎨
⎧

+−>≅<< )()()1( p
p
nt

t
np n δδδψ  

where the estimate is obtained in a single ‘run’.  

VI. CONCLUSION 
We have carried out a comparison of two deterministic 

methods with Monte Carlo analog simulation for computing 
the radiative flux for flat isothermal plates and have shown the 
effort required in each method. While MC is computation-
intensive, it has the advantage of being applied to complex 
geometrical configurations and is capable of handling realistic 
scattering laws for thermal radiation. This is a great advantage 
over deterministic methods. We have also considered the MC 
random-walk in some detail to show the approach by which 
derivative quantities can be sampled during a full simulation. 
This work is useful as a didactic exercise to extend MC to 
complex problems for engineering design sensitivity. 

REFERENCES 
[1] J. P. Holman, Heat Transfer, Seventh Edition, McGraw-Hill Inc., 1992. 
[2] M. Quinn Brewster, Thermal Radiative Transfer and Properties, John 

Wiley & Sons, Inc., 1992. 
[3] Michael F. Modest, Radiative Heat Transfer, Second Edition, Academic 

Press, 2003. 
[4] Gökmen Demirkaya, Monte Carlo Solution of a Radiative Heat Transfer 

Problem in a 3-D Rectangular Enclosure Containing Absorbing, 
Emitting, and Anisotropically scattering medium, M.S. Thesis, 
Department of Mechanical Engineering, Middle East Technical 
University, December 2003. 

[5] J. Spanier and E. M. Gelbard, Monte Carlo Principles and Neutron 
Transport Problems, Addison-Wesley Publishing Company, 1969. 

[6] E. A. Straker, P. N. Stevens, D. C. Irving and V. R. Cain, The MORSE 
Code – A Multigroup Neutron and Gamma-ray Monte Carlo Transport 
Code, Oak Ridge National Laboratory, ORNL-4585 (1970) 

[7] J. F. Briesmeister, Ed., “MCNP—A General Monte Carlo Code for 
Neutron and Photon Transport”, LA-7396-M, Los Alamos National 
Laboratory (1986). 

[8] M. Ragheb, Slowing Down in Hydrogen or Particle Transmission 
through a Slab Shield, University of Illinois, Urbana-Champaign, 2003. 

[9] H. Rief, “Generalized Monte Carlo Perturbation Algorithms for 
Correlated Sampling and a Second-Order Taylor Series Approach”, 
Annals of Nuclear Energy, vol. 11, 9, 455 (1984). 

[10] Z. U. Koreshi and J. D. Lewins, "Two-group Monte Carlo Perturbation 
Theory and Applications in Fixed-Source Problems", Progress in 
Nuclear Energy, vol. 24, pp.27-38 1990. 

[11] Z. U. Koreshi, A. Kinrot and J. D. Lewins, "Neutronic Sensitivity 
Analysis of the Experimental Test Reactor TIBER-II Blanket Design", 
Fusion Technology, vol. 22, No.3, pp.371-387, Nov.1992. 


