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Abstract—The present paper concerns with the influencebefr fi
packing on the transverse plastic properties of amehatrix
composites. A micromechanical modeling procedweused to
predict the effective mechanical properties of cosifg materials at
large tensile and compressive deformations. Micucsire is
represented by a repeating unit cell (RUC). Tweeffilarrays are
considered including ideal square fiber packing aaddom fiber

packing defined by random sequential algorithm.
micromechanical modeling procedure is implementedr f
graphite/aluminum metal matrix composite in whicthe t

reinforcement behaves as elastic, isotropic sdligd the matrix is
modeled as an isotropic elastic-plastic solid fellgy the von Mises
criterion with isotropic hardening and the Ramb@ggood

relationship between equivalent true stress andvrittgnic strain.

The deformation is increased to a considerablesvievaluate both
elastic and plastic behaviors of metal matrix cosiigs. The yields
strength and true elastic-plastic stress are déatedn for

graphite/aluminum composites.

Keywords— Fiber packing, metal matrix

micromechanics, plastic deformation, random

I. INTRODUCTION

composites,

assumed to simplify the micromechanical model. i&ybito
predict composite properties from those of the ttuents is
always an attractive idea. However, the micromeidan
approach is often hindered by simplifying assumpiadn
geometrical representation of microstructures. Erpental
observations have shown that the fiber stringsdistibuted
in the random pattern. Hence, a model is requioednalysis

Théhe large deformation of three-dimensional RUC wihdom

fiber packing to determine the effective propertigsmetal
matrix composites.

The present research works determines the influarice
fiber packing on the plastic properties of metal thira
composites. The micromechanical modeling procedigre
implemented to evaluate the response of unidineatio
continuous fiber composites subjected to finite abxi
deformation. The microstructure of the metal matniaterials
is represented by a RUC. Two fiber arrangements
considered including ideal square fiber packing amadom
fiber packing defined by random sequential algonitiRUC
subjected to tensile and compressive uniaxial dedition to
determine the effective properties of metal matdxnposite
considering the periodicity conditions on the defation of

are

ETAL matrix composites have found many applicatlonﬁuc boundary surfaces. The Volume averaging schiame

as constructional and functional materials in défe
industries. The presence of reinforcement in metatrix
materials improves the properties such as theléessiength,
creep resistance, fatigue strength, thermal sheskstance,
and corrosion resistance. To design a metal matiRposite
for desired working conditions, a model is requitedrelate
the macroscopic response of such heterogeneousiatate
the arrangement of the reinforcements in the mianotire
and the properties of constituents and interactietween
them. The micromechanical model provides an efiicie
procedure to determine properties of composite rizdse
Initially, Adams [1] studied the transverse meckahi
behavior of a unidirectional continuous fiber-reirded
composite with fibers of circular cross section djopting
finite element cell models under plane strain cbods. A
simple geometrical cell composed of matrix and us@n
material is repeated by appropriate boundary cuomditto
represent a composite with a periodic microstruct@ood
agreement was achieved between calculated andiegreal
stress-strain curves for a rectangular fiber amamgnt. Sun
and Chen [2] developed a simple micromechanical ehtal
describe the elastic-plastic behavior of fibroumposites. A
square cross section for fibers and plane stranditions are
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implemented to apply the local macroscopic deforomat
gradient tensor to the RUC assigned to the miarogire. The
micromechanical modeling procedure is implemented f
graphite/aluminum metal matrix composite in whiche t
reinforcement behaves as elastic, isotropic sohldd the
matrix was modeled as an isotropic elastic-plastadid
following the von Mises criterion with isotropic tigening and
the Ramberg-Osgood relationship is assumed between
equivalent true stress and logarithmic strain. R§/€ubjected
to uniaxial large deformation increased to a caarsitle value
to evaluate both elastic and plastic behaviors efainmatrix
composites. The yields strength and true elastist stress
are determined for graphite/aluminum composites.

Il. MICROSTRUCTURE

The microstructures of unidirectional fiber reirded
composites are commonly described by three
arrangement including square, hexahedral and rarfimen
packing patterns. The micromechanical results foedr
anisotropic elastic materials revealed that theuwated axial
and shear elastic modulus are dependent on theddmking
[3]. Since the microstructures with square and hexesal
fiber-packing patterns are idealized geometricptesentation
for fiber arrangement, the microstructure with ramdfiber
packing vyields more accurate results. At large tmlas
deformation of anisotropic materials, the resultighly

fiber
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depends on the fiber packing and for some fibeargement,
the deformation locking may be observed at loweist

Since the heterogeneities are orders of magnituuler
than the total body, the deformation field in theinity of one
inclusion is approximately the same as the defdondield
near neighboring inclusions [4]. Experimental olagons [5-
7] have shown that deformation field in the vigniof a
subvolume is approximately the same as deformdi@bah of
the near neighboring subvolumes. The size of suwivelis
small enough compared to the total microstructize so that
the effective properties computed from the subvauare
independent of its size and position within the nestructure.
Therefore, the microstructure is represented bgraogic unit
cell that deforms in a repetitive way. The periodiodeling
can be quite useful, because it provides rigor@tsnations
with a priori prescribed accuracy for various miter
properties [8-10].

Microstructure shown in Fig. 1 is considered fore th
unidirectional continuous fiber composites. Thewiar fibers
with identical radius are dispersed in the micnastire in a
random and isotropic manner. It is assumed thatdneposite
material has a periodic microstructure which carob&ined
by translating RUC along three orthogonal axes. Tiber
distribution in the unit cell is generated using trendom
sequential adsorption algorithm [11] which enswaeandom,
isotropic and homogeneous distribution for the beithin
the RUC. The random coordinates in the cross-geotid
microstructure are generated for the center ofutarcfibers
with specific diameter, denoted loy When a fiber intersects
the boundaries of unit cell, another fiber is getea on the
neighboring unit cell in order to obtain periodicitucell. The
new fiber is added to the microstructure when tistadce
between the centers of a given fiber and the dofilesrs
previously generated is greater than a minimumesld.d).
Such condition prevents overlapping fibers as aglensuring
adequate mesh geometry for the matrix material téoca
between fibers. To prevent element distortion dyrimesh
generation, the fiber surface should not be tosecl@greater

than 0.1) to the boundary surfaces of the RUC. When such

conditions are satisfied, the fiber is added touhi cell at the
generated random coordinates. The procedure istegentil
the fiber volume fraction reaches close to a pféadd value.
The square cross section is considered for unit(bgk by)
and the ratio of fiber diameter to unit cell dimiems(d / 2b,)
is set to 0.05.

Aluminum alloy reinforced with stiff graphite fiberis
considered. The fibers behaved as elastic, isargpiids
characterized by the elastic modulds= 250 GPa and the

Poisson's ratie; = 0.2. The matrix is modeled as an isotropic

elastic-plastic solid following the von Mises crit;n with
isotropic hardening. The matrix elastic constamesEs, = 70
GPa ant,, = 0.33, and the Ramberg-Osgood relationship

assumed between equivalent true st@$§, and logarithmic
strain,gn, 1.€.,
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En = K 1)
WhereK = 400 MPa is the strength coefficient ame 0.1 is
the matrix strain hardening exponent [12]. Regaydinese
data, an initial yield stress of 225.3 MPa is ated. The
aluminum material is reinforced with 0.4 fiber voia
fraction.

Fig. 1 Microstructure considered for metal matrxposites having
is random fiber packing pattern

Micromechanical model provides efficient tool
characterize composite materials from known progerof
their constituents and the distribution of the f@ioement in

MICROMECHANICAL MODEL
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the microstructure through the analysis of a RUKke €ssence power in RUC assigned at the corresponding poirat given
in micromechanical approach is that the heterogemeodeformed configuration. It was shown [13] that tmeergy

structure of the composite is replaced by a homeges
medium with anisotropic properties.

A Lagrangian viewpoint is used to describe the nte
motion and the components of vectors and tensoes
described in a fixed rectangular coordinate systémthe
reference configuration of RUC, the position of ygital
material particle is expressed with vec¥rcomponentsX;).
In the deformed configuration at instartcéhe particle moves
to a position described with vectogx, (componentsx)
corresponding to the displacement veatigy, (components

balance results in

3 3 | 3.3 1
PRI A
af=l i=1 j=1 i=1 S
Where the dot superscript denotes to the time déviv, P;
are the components of nominal stress tensor defimed

Fi ﬁj tds 4)

macroscopic levels; are the components of traction force and

s is the deformed geometry of boundary surfate

IV. PLASTIC BEHAVIOR OFMMC

u). The deformation is typically described using the The finite element analysis is used to determine th

deformation gradient tensor,
components are given by;

0% (
X,

designated Iy whose

F, =

response of RUC subjected to large deformationsceSthe
periodicity constraint enforces that the oppositees deform
identically, the geometry of RUC is meshed so ttet
number and distribution of nodes on opposite faees
identical. The RUC is meshed by eight-node linedckb

The reference geometry of RUC is assumed to becfements using sweep technique along 1-axis.

rectangular prismatic volume whose surfaces arallparto
the surfaces defined in a fixed Cartesian coordirgtstem
with origin located at the centre of RUC. As showrfFig. 1,
the initial dimension of RUC isk X 2h, X 2b;. The boundary
surfaces of reference geometry perpendiculai-axis are
designated witl§" andS~ intersecting-axis atX; = +b; andX;
= -, respectively. The displacement of the points tedan
each boundary surface is measured respect to cpaiets

labeled as point®,, P1, P, andP; in Fig. 1. Such points are

called reference points. The current position dhmlocated
on surface§™ is measured respect to polRy, while the points
located onS,*, S,* andS;" are measured respect to poiRts

P, andP;, respectively. To enforce the periodicity consttai
the current position of boundary surface is desctiby [13]:

0) — 1 H—
Xi(=by, X, Xa ) ™ X((t; = Xi(b, X, Xa ) X((t)) i ={123 (2a)
0) — 2 H—
- x(d = Xi(%, by Xat) X((t i ={123 (2n)

Xixoortnt) = X0 = X =X 1={223 @0)

Xi(Xl,—bz,X3,t)

Where)g%is the components of current position vector o

corner pointP;.

To relate the macrostructure deformation to
microstructure deformation, it is assumed that tbeal
macroscopic deformation gradient tensor at a gpant to be
equal the volume averaged deformation gradientotens$
RUC assigned at that point. Using the periodictpgtraining
equations (1), it can be shown [13] that the mawpE
deformation gradient tensor is a function of curmgwsition of
corner pointd,, P, P, andP; as follows:

- X =%y -y

T 2b,

It should be noted that no summation is considened
superscript in Eq. (3).

An energy balance is considered to relate stresoten the
macroscopic and microscopic scales. The internalepaat
macroscopic level at a given point is set equahtinternal

+9, €)
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The initial and maximum allowable increment sizes set
to 0.001 and 0.025 of total increment size, respelgt The
increment size is automatically modified based dwe t
convergence rate. The small value for initial imecemt size
causes that several initial increments concern \eithstic
behavior and prevent the abrupt transition fromsteato
plastic behaviors. Therefore, the yield strengtttatculated
with reasonable accuracy.

The numerical procedure is used to determine tfextdfe
macroscopic mechanical response of metal matrixposite
in transverse tensile and compressive
mechanisms. Two fiber
including ideal square fiber packing and randoreffipacking.

A.Tension normal to fiber direction

The RUC is subjected to a specific axial tensilfodeation
along 2-axis normal to the fiber direction, whileetRUC is
free to deform along two other axes. The displacenud
reference points is described by Eq. (3), in whidh value of

22 IS increased from a unit value to a specific valuhile

deformation. The values offF;; and F33 are calculated in

thenicromechanical modeling. Fig. 2 depicts the defm

geometry of RUC subjected td,, = 1.3. Since the
microstructure is extruded uniformly along fiberedition and
there is no gradient on geometry, material properiand
loading conditions, single raw of elements is cdased along
1l-axis. As shown in Fig. 2a, the boundary surfaaseRUC

with square fiber packing pattern remain flat anthagonal at
the deformed status. It was verified [14] that thgial

deformation causes no distortion on the boundarfases of
RUCs having three orthogonal reflectional symmeplianes
and the initial flat surfaces remain flat withoutyaotations.

deformation
arrangements are considered

12, F13, Fo1, Fo3, F31 areF3; are set to zero to prevent shear
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(b)
Fig. 2 Initial and deformed geometries subjectettisile axial
deformation normal to fiber direction in the RUS of
graphite/aluminum composite having 0.4 fiber volunaetion and
microstructures with a) square fiber packing b)d@m fiber packing
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Fig. 2b shows the deformed geometries for RUC with
random fiber packing meshed. There is considerable
displacement in the center of fibers, while negligi
deformation is observed in fibers because of thegh
stiffness compared to matrix material. The inibaundary flat
surfaces normal to the 2 and 3 axes are dispantéioei RUC
because of non-uniform fiber distribution on thess section.

It should be noted that the plane normal to 1-ssmsains flat
in both RUCs due to reflectional symmetric plane.

Fig. 3 illustrates the equivalent stress in matmaterial
subjected to transverse stretch ratio 1.3 in gtafiuminum
composite. As shown in Fig. 3a, The von Mises streaches
to maximum value at the mid-distant between fibarghe
symmetric planes normal to fiber direction as wedl the
surface in the fiber/matrix interaction. Fig. 3lmals that more
volume of matrix materials reaches to maximum stres
between fibers compared to fiber/matrix interface i
microstructure with random fiber packing patterrs depicts
in Fig 3, the more equivalent stress is observedthia
microstructure with random fiber packing due to aloc
severely deformation.

The nominal stres$,, is calculated using the resultant
forces applied to boundary surfaces and the stredtio,
namely,

F F
IHdS —I —I (5)
Fiis Fiis

%

Based on deformation gradient and nominal stressote
the Cauchy stress applied along tension directien i
determined as,

=J37F,P, = i
F11F33

Fig. 4 depicts the variation of calculated Cauctrgsso,,
as the deformation proceeds for aluminum materiad a
graphite/aluminum composites with random and sqtibes-
packing patterns. To verify numerical procedureduser
micromechanical analysis, the properties of fibetarial are
set the same as matrix material in the microstreciwith
random fiber packing pattern and the calculateckotiffe
properties are compared to net aluminum materiaé Yield
strength and stress in elastic and plastic regionselate well
with  the properties of aluminum materials. The
micromechanical model evaluates the same yielchgtinefor
composite for both microstructures. The yield ggtbnof
metal matrix composite with 0.4 fiber volume fracti has
little increase respect to net aluminum materia¢gause some
regions of matrix material experience plastic defation at
low level deformation due to local plastic deforioat Since
the matrix material has more freedom to flow betwébers
in random fiber packing, less stress is requiredpply plastic
deformation compared to microstructure with squfiber
packing.

(6)



S, Mises

(Avg: 75%)
+4.654e+08
+4.365e+08
+4.077e+08
+3.788e+08
+3.500e+08
+3.211e+08
+2.923e+08
+2.634e+08
+2.346e+08
+2.057e+08
+1.769e+08
+1.480e+08
+1.192e+08

S, Mises

(Avg: 75%)
+5.3682408
+5.0612408
+4.754e 408
+4.4472+08
+4.140e+08
+3.8332+08
+3.526e+08
+3.219e408
+2.9122408
+2.6062+08
+2.299e408
+1.992e+08
+1.685e+08
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Fig. 3 Von Mises stress in matrix material subjddtetransverse
stretch ratio 1.3 in graphite/aluminum compositeihg 0.4 fiber

volume fraction and microstructure with a) squélberfpacking b)
random fiber packing

023 (MPa)

- | | | |
800 T — — " T
700 Vf=0.4, RUC with Square fiber packing /
w00 N\ ——
\—’-/
500 — ’Y
400 7!5'—" \
300 X A
200 Vi=0 Vf=0.4, RUC with Random fiber packing
100
0
1 1.05 1.1 1.15 1.2 1.25 1.

F22

Fig. 4 Cauchy stress required to applied elaststf tensile

transverse deformation to net matrix material amdmosites with
different microstructures

w
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B.Compression normal to fiber direction

The micromechanical modeling procedure is used to
determine the elastic-plastic transverse propentiesnetal
matrix composites in the compressive loading caomtt The
RUC is subjected to a specific compressive axi&brdeation
along 2-axis normal to the fiber direction, whileetRUC is
free to deform along two other axes. The displace#nu
reference points is described by Eq. (3), in whiwhvalue of
F,, is reduced from unit value up to 0.75, whig, Fi3, F,q,
F,s, F31 areF3, are set to zero to prevent shear deformation.
The values of;; andF3; are calculated in micromechanical
modeling procedure.

Fig. 5 depicts the deformed geometry of RUC subjd¢b
compressive deformation. Similar to tensile defation, the
boundary surfaces of RUC with square fiber packiagern
remain flat, as shown in Fig. 5a. The compressibiRIC
along 2-axis makes a considerable increase in Ribhergsion
along 3-axis normal to fiber direction, while thésenegligible
dimension change of RUC along fiber direction. Thigh
stiffness fibers make more severely deformationmatrix
material wherfF,; is reduces more than 0.75 and there is high
distortion in the elements considered for matrixterial.
Therefore, the analysis stops whEg, reaches to 0.75. As
shown in Fig. 5b, the microstructure with randonbefi
packing has more flexibility because the fiber ngs can
move between each other aRg is reduced to 0.7. Since the
fibers are distributed randomly and there is no regtmic
plane, the boundary surfaces normal to fiber divaciare
distorted from initial flat surfaces.

Fig. 6 illustrates the variation of compressive €laustress
as the deformation applies to aluminum material and
graphite/aluminum composites with random and sqfibes-
packing patterns. There is considerable increasegield
strength in metal matrix composites with 0.4 fihelume
fraction compared to net matrix material. Both ragtructures
have the same vyield strength. Similar to tensilomeation,
the microstructure with random fiber packing regsitower
stress to apply plastic deformation compared taesicucture
with square fiber packing, because fibers in randumatiern
can move between each other and lower stress enaisin
matrix material located between fibers. As showrFig. 6,
there is considerable stress rise in microstrustwi¢h square
fiber packing as the compressive plastic deformmagipplies,
because of fiber distant decrease.

The logarithmic strain is used to describe the darg
deformation in plastic deformation and It is definas the
logarithm of the ratio of current length to initi@ingth. Fig. 7
shows the graph of true (Catchy) stress-logarithsiigin for
net matrix material and graphite/aluminum compasitéth
microstructures having fiber arrangement in squarde
random packing patterns. The microstructure witluase
fiber-packing patterns has similar plastic progartin tension
and compression, while the microstructures withdecen
fiber-packing patterns require more plastic stress
compressive plastic deformation than tensile piasti
deformation. Table 1 lists the true stress valweiired to
apply the same plastic strain in tension and cosgive. The
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difference of true stress is a reasonable value fc 1000 I

T T T 1

microstructures having random fiber-packing patern 800 VE=04, RUC with Square fiber packing
600 —

400 —

200
0 \

-200 vi=0
-400
-600
-800
-1000
-0.25 -02 -015 -01 -0.05 0 0.05 0.1 0.15 0.2 0.25

OG22 \MPa)

Vf:d,4, RUC with Random fiber packing

€2
Fig. 7 True stress — logarithmic plastic strainpgréor aluminum
material and graphite/aluminum composite havingfid&r volume
fraction and different microstructures

TABLE |
TRUE STRESSVALUES REQUIREDTO APPLY THE SAME PLASTIC STRAIN TOTHE
MICROSTRUCTURESNITH FIBER ARRANGEMENT IN SQUARE AND RANDOM
PACKING PATTERNS

True stress

} . Logarithmic True stress -
Fiber packing ) : difference
plastic strain (MPa) (MPa)
-0.1 -463.48
Random +01 +453.36 +10.12
-0.1 -488.37
Square +01 +488.74 0.37

V. CONCLUSIONS

The micromechanical technique provides an efficieat to
characterize transverse plastic properties of metatrix
composites at tensile and compressive large defansa The
present procedure is useful to develop or verify fmite
strain constitutive laws for metal matrix compositeased on
the distribution of the reinforcement in the midrasture and
the properties of constituents and interaction betwthem.
The composite microstructure is described by RUG wvo

. N (b) . - fiber distributions including ideal square and ramdfiber-
Fig. 5 Initial and deformed geometries subjectedampressive axial packing patterns. Both microstructures predictshme yield
deformation normal to fiber direction in the RUC of strength for composite materials. However, as thastic

graphite/aluminum composite having 0.4 fiber volunaetion and

. . . . ) . strain applies to microstructures, it is shown th#ferent
microstructure with a) square fiber packing b) @mdiber packing bp

stress requires applying tensile or compressiverdeition

0 I ‘ I and stress difference becomes considerable valuenéoe
400 |—\f=0.4, RUC with Random fiber packing | Vf=0 pla}stic strain. S_ince the fiber§ can move bet_wemtn th_er in
-200 i ‘\ axial deformation of the microstructure with randdiber
-300 ! 4 packing, lower stress requires applying plastiaistcompared

-400 — . . . _ .
oo | ?:?,— to microstructure with square fiber-packing patserhe

00 — e microstructure with square fiber packing has simpéastic
700 -l P \ properties in tension and compression, while the
microstructures with random fiber-packing patteraguires

022 (MPa)

-800 / Vf=0.4, RUC with Square fiber packing X i i . i
-900 i i i ‘ more plastic stress in compressive plastic defaonathan
-1000 tensile plastic deformation.
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