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Abstract: 

This study adopted two popular Runge-Kutta algorithms to investigate the chaotic driven impact of two 
important parameters of excited Duffing oscillator using fractal disk dimension characterization and 
comparison. The constant time step simulation of ‘family’ of Duffing oscillator beyond unsteady periods was 
employed to create scatter phase plots at every end of excitation period and over one thousand consecutive 
excitation periods. The resulting distorted Poincare images were quantified using fractal disk dimension 
obtained by use of optimum disk count method. However, the comparison of dimension distribution was made 
on one hundred equal intervals between limits for two distinct cases. The spectrum of estimated fractal disk 
dimension is noisy. Its variation is 1.312 1.681D   and 1.126 1.358D  respectively for damp and 
excitation amplitude based cases using fourth order Runge-Kutta algorithms as simulation tool. However the 
variation of dimension is 1.277 1.688D   and 1.140 1.384D   for corresponding case using fifth 
order Runge-Kutta algorithms. Furthermore, both cases enjoyed unimodal disk dimension distribution for all 
simulation algorithms. The approximated modal dimension is 1.52 and 1.23 in favour of damp and excitation 
amplitude value while the average modal relative frequency is 8.0%.The study results therefore supported damp 
parameter properly tune as easier agent of impacting chaotic behaviour in Duffing oscillator compares with its 
excitation amplitude counterpart other simulation conditions remains same. 
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1. Introduction 

 Extensive literature study has affirmed the fact that parameters alteration has a very high potential in 
influencing the dynamics of engineering systems. The impact of high-speed machine tool parameters on the 
contouring accuracy of a system has been investigated (Richard et al, 2004).Ricardo et al (2005) stated in their 
paper that parameter variations are very important in the modelling of nonlinear systems. It is reported in the 
paper that parameters choice often lead to interesting dynamics such as complex periodicity and chaos.  The 
analytical formulation of contouring error in the instance of a straight line, circle and corner crossing was 
derived using a simplified axis drive model including the main servo parameters and dominating mechanical 
mode. Christopher (1999) studied the parameter space boundary for escape and chaos in the Duffing Twin-Well 
oscillator. The construction of a physical, nonlinear air-tract oscillator with ultrasound position detection 
systems allowed the author to observe a wide range of oscillatory behaviours including chaotic dynamics. It is 
inferred from his study that the range of space parameter or conditions has a great impact on the dynamics of 
Duffing Twin-Well Oscillator. An interesting analysis of a nonlinear oscillator system with one degree of 
freedom such as Vander Pol self – excitation term and parametric excitation of the Mathieu type was carried out 
by Jerzy (2001). It was found in the author’s paper that a small external force causes qualitative and quantitative 
changes in the main parametric resonance. It is reported that the external harmonic force changes the system 
from chaos to regular motion. Abdelhak and Mohamed (2009) investigated the effect of fast harmonic excitation 
on frequency-locking in a Vander Pol-Mathieu Duffing oscillator. The outcome of their work implies that fast 
harmonic excitation parameter can significantly influence the nonlinear characteristics of spring behaviour as 
well as the entrainment region. Bogdan et al (2004) investigated how chaotic dynamics can be exploited as a 
tool for detecting parameter variations in Aeroelastic systems. The authors demonstrated that the sensitivity of 
chaotic behaviour to parametric changes is an effective tool in detecting structural changes such as variations in 
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the stiffness parameter of the mounting point of the upstream end of the system panel. Alexander (1993) 
examined the influence of parameters variation on the dynamic system. It was shown in the paper that chaos 
appearing with a result of quasiperiodic motion may be easily suppressed by weak parametric perturbation of 
the system. Insook (1994) investigated how the dynamics of chaotic oscillator can be explored in the musical 
industry. The author was able to develop an interface which was extensively used for exploring parameter 
regions for pre-compositional activity and for sending control signals to both analog and simulated versions of 
the oscillator in real-time performance. This has no doubt serves as a clue for enriching concert performance. 
Syed et al (2010) showed the influence of variation in parameters as tools for generation and enhancement of 
chaos in erbium-doped fiber-ring lasers. It is reported in this paper that the degree of chaos determines the level 
of security in chaotic optical communication systems. In order to have an insight to the chaotic signatures of this 
system, certain parameters (such as the width and height of individual pulses, relationship of their time periods, 
gain quenching, shape, formation of bunches, and bumps of the chaotic waveforms) need to be analyzed. It is 
deduced from the study that the individual and cumulative behaviour of all parameters in influencing optical 
chaos provides a reliable platform in designing secure communication systems. The influence of parameters 
variation on the phase portrait in the mixing model has been studied (Lonescu and Cosrescu, 2008). The authors 
observed that the challenge of flow kinematics is far from complete solving. The mathematical methods 
developed in the field of mixing theory have established a significant relation between turbulence and chaos. 
Earlier study of the authors on the 3D non-periodic mixing models exhibited a quite complicated dynamic 
behaviour. Findings of the authors as stated in their paper showed that parameter variations has great influence 
on the length and surface deformations of the system models. As part of the efforts of the scientists and 
engineers to ensure practical realization of the model-based emergency forecasting in the pulse system, the 
effect of parameter changes on this system has been examined (Yury and Anna, 2003). The fractal diagram 
developed established a one to one correspondence between the parameter and phase subspaces by line up 
stages. This implies that parameter variations have a great influence on the system’s model. The results of their 
study have provided a reliable platform for forecasting in the pulse system. In the effort of Dimitrios (2011) to 
develop a model for predicting population dynamics of the flour beetle (Tribolium Freemani), the influence of 
parameter variations was identified as key to population dynamics. Dimitrios found that for certain parameter 
manipulations, the model for insect species predicts chaotic behaviour with strong statistical confidence.  

The dearth of literature which accounts for impact of parameter variations on the chaos dynamics of excited 
Duffing oscillator is a strong motivation for the research that is being reported in this paper. The research 
question of whether damp parameter or excitation amplitude is the key agent for impacting chaotic behaviour in 
Duffing oscillator demanded for an answer in order to further explore this dynamic system. The objective of this 
study was to characterize and compare chaos impact of excited Duffing Oscillator parameters. 

2. Methodology 

2.1.  Harmonically excited   duffing’s oscillator 

 This study investigated normalized governing equation of harmonically excited Duffing system given by 
equation (1) with reference to Moon (1987), Dowell (1988) and Narayanan and Jayaraman (1989b). 

2(1 ) ( )
2 o

x
x x x P Sin t 
 

          (1) 

In equation (1) x , x


 and x


 represents respectively displacement, velocity and acceleration of the oscillator 
about a set datum. The damp coefficient is . Amplitude strength of harmonic excitation, frequency and time 

are respectively oP ,   and t . According to literature combination of  = 0.168, oP
 
= 0.21, and  = 1 .0 or  = 

0.0168, oP = 0.09 and  = 1.0 parameters leads to chaotic behaviour. However, the present study focuses on 

fourth and fifth orders Runge-Kutta simulations of two distinct cases: fixed excitation frequency and amplitude 
coupled with constant step incremental of damp ( 0.0168 0.1680  ) and fixed excitation frequency and 

damp coupled with constant step incremental of excitation amplitude ( 0.09 0.21oP  ) over large number of 

excitation period. The scatter phase plots of simulation results of ‘family’ of excited Duffing oscillators are 
captured and characterised periodically using fractal disk dimension obtained by optimum disk count method. 
The relative distribution of the fractal disk dimensions were obtained and compared over one hundred sub-
intervals for the cases and simulation algorithms. 

In Salau and Ajide (2012) observation scale (X), optimum disk counted and the fractal disk dimension (D) are 
related by power law given by equation (2) for constant of proportionality (C). The slope of line of best fit to 
log-log plot of X versus Y gives estimate of the fractal disk dimension (D). 

DY CX            (2) 
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2.2.  Parameters of cases investigated 

 A constant time step ( t  = 0.01), initial conditions (1, 0), random number generating seed value (9876), ten 
(10) observation scales and five (5) iterates are common to all investigated cases. The unsteady and steady 
solutions spanned the first twenty (20) and one thousand (10000) simulation periods of harmonic excitation 
respectively. 

Case-I: Two thousand of damp value at constant spacing in the range                

                          ( 0.0168 0.1680  ), oP
 
= 0.21, and  = 1.  

Case-II: Two thousand of excitation amplitude value at constant spacing in the range  

                           ( 0.09 0.21oP  ),   = 0.168, and  = 1.   

3. Results and Discussions 

 Figures 1 and 2 refer. These are sample of scatter phase plots  in thousand simulated and characterised using 
fractal disk dimension for cases I and II in this study. Similarly table 1 is a sample of optimum variation of disks 
counted for ten (10) different observations scale and five (5) iterations. The slope of line of best fit in figure 3 is 
an expression of the fractal quantification of space filling ability of the images given in figures 1 and 2. 
Therefore, it can be argued that figure 1 fill space more than figure 2 with an estimated fractal disk dimension 
value of 1.3937 and 1.3585 respectively.  These estimated fractal dimensions are supported by appropriate 
entries of sample table 2 out of a thousand estimated in this study. The corresponding spectrum and relative 
distributions are given comparatively in figures 4 to 7. 
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Figure 1:  Scatter phase plots for Case-I at the end of twenty first (21) simulation periods (period of excitation). 
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Fourth order algorithms
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Figure 2:  Scatter phase plots for Case-II at the end of twenty first (21) simulation periods (period of excitation). 

Table 1:   Variation of optimum counted disks with increasing observation scale number for cases I and II at the end twenty first (21) 
simulation periods (period of excitation). 

Observation  
scales 
(SC) 

Disks counted 

Case-I 
(DCD) 

Case-II 
 (DCP) 

Natural Logarithms 

SC DCD DCP 
1 3 2 0.00 1.10 0.69 
2 7 3 0.69 1.95 1.10 
3 14 7 1.10 2.64 1.95 
4 24 11 1.39 3.18 2.40 
5 28 15 1.61 3.33 2.71 
6 34 19 1.79 3.53 2.94 
7 45 25 1.95 3.81 3.22 
8 52 28 2.08 3.95 3.33 
9 63 32 2.20 4.14 3.47 

10 73 36 2.30 4.29 3.58 
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Figure 3:  Log-Log plot of observation scale and disks counted for cases I and II. 

Table 2:  The variations of estimated fractal disk dimension with increasing periods of simulation. 

Estimation time point 
 in excitation periods 

Estimated fractal disk dimensions 
Fourth order algorithms Fifth order algorithms 

Case-I Case-II Case-I Case-II 

21 1.394 1.358 1.323 1.373 

22 1.429 1.331 1.400 1.315 

23 1.350 1.327 1.469 1.299 

24 1.314 1.313 1.442 1.303 

25 1.410 1.300 1.427 1.365 

26 1.449 1.333 1.337 1.323 

27 1.416 1.307 1.482 1.301 

28 1.345 1.299 1.379 1.288 

29 1.364 1.343 1.463 1.322 

30 1.410 1.316 1.501 1.334 

31 1.405 1.293 1.347 1.305 

32 1.508 1.302 1.614 1.299 

33 1.385 1.330 1.387 1.310 

34 1.583 1.290 1.585 1.313 

35 1.450 1.315 1.551 1.292 

36 1.423 1.332 1.390 1.272 

37 1.434 1.308 1.560 1.313 

38 1.455 1.281 1.475 1.322 

39 1.603 1.313 1.432 1.305 

40 1.415 1.297 1.406 1.310 
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Figure 4:  Spectrum of estimated fractal disk dimension for a fourth order algorithms simulations 

Fifth order algorithms

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 201 401 601 801

steady excitation period

d
is

k 
d

im
en

si
o

n

Case-I

Case-II

 

Figure 5:  Spectrum of estimated fractal disk dimension for a fifth order algorithms simulations 
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Figure 6:   Relative distribution of estimated fractal disk dimension for a fourth order algorithms simulations 
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Figure 7:   Relative distribution of estimated fractal disk dimension for a fifth order algorithms simulations 

Figures 4 to 7 refer. The spectrums have noisy appearance for the cases and algorithms. The estimated fractal 
disk dimension variation is 1.312 1.681D   and 1.126 1.358D  respectively for case-I and II using 
fourth order Runge-Kutta algorithms as simulation tool over one thousand steady excitation periods. Similarly 
the recorded dimension variation is 1.277 1.688D   and 1.140 1.384D  respectively for case-I and 
II with fifth order Runge-Kutta algorithms as simulation tool. These ranges of disk dimensions suggest that the 
scatter phase plots vary from simple image to complex attractor. Both cases enjoyed unimodal disk dimension 
distribution for the two simulation algorithms investigated. The approximated modal dimension is 1.52 and 1.23 
respectively for case-I and II while the average modal relative frequency is 8.0%. In view of these observed 
estimated dimension variation and modal dimension, it can be argued that damp parameter tune properly has 
higher potential of driven Duffing oscillator chaotically than its excitation amplitude counterpart provided other 
simulation conditions are same. It is to be noted that there is correlation between chaotic behaviour and fractal 
dimension, a higher dimension signifies higher unpredictability or chaos and vice-versa. 
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4. Conclusions 

This study has quantified the chaotic driven impact of damp and excitation amplitude on Duffing oscillator 
using fractal dimension characterizing index. The constant step tuning of damp value and excitation amplitude 
leads to noisy spectrum and estimated dimension variation of 1.277 1.688D  and 1.126 1.384D   
respectively. The tune of damp and excitation amplitude resulted in approximated modal dimension of 1.52 and 
1.23 respectively with an average modal relative frequency being 8.0%. The foregoing dimensions supported 
damp parameter as easier agent of chaotic behaviour of Duffing oscillator compares with its excitation 
amplitude counterpart, other simulation conditions remains same. 
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