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INTRODUCTION:

Large damping in a structural material may be either desirable or undesirable,

depending on the engineering application at hand. For example, damping is a

desirable property to the designer concerned with limiting the peak stresses

and extending the fatigue life of structural elements and machine parts

subjected to near-resonant cyclic forces or to suddenly applied forces. It is a

desirable property if noise reduction is of importance. On the other hand,

damping is undesirable if internal heating is to be avoided. It also can be a

source of dynamic instability of rotating shafts and of error in sensitive

instruments. Resonant vibrations of large amplitude are encountered in a

variety of modern devices, frequently causing rough and noisy operation and,

in extreme cases, leading to seriously high repeated stresses. Various types of

damping may be employed to minimize these resonant vibration amplitudes.

Design sensitivity analysis usually refers to the study of the effect of

parameter changes on the result of an optimization procedure or an

eigenvalue–eigenvector computation. In particular, if a design change causes a

system parameter to change, the eigen solution can be computed without

having to recalculate the entire eigenvalue / eigenvector set. This is also

referred to as a reanalysis procedure and sometimes falls under the heading of

structural modification. This  section  develops  the  equations  for  discussing

the  sensitivity  of  natural frequencies and mode shapes for conservative

systems. The motivation for studying such methods comes from examining

the large-order dynamical systems often used in current vibration technology.

Making changes in large systems is part of the design process. However, large

amounts of computer time are required to find the solution of the redesigned

system. It makes sense, then, to develop efficient methods to update existing

solutions when small design changes are made in order to avoid a complete

reanalysis. In addition, this approach can provide insight into the design

process.



Two general types of units are used to specify the damping properties of

structural materials: (1) the energy dissipated per cycle in a structural element

or test specimen and (2) the ratio of this energy to a reference strain energy or

elastic energy.

Absolute damping energy units are:

DT = total damping energy dissipated by entire specimen or structural element

per cycle of vibration, N.m/cycle

DAvg = average damping energy, determined by dividing total damping energy

DT by volume V0 of specimen or structural element which is dissipating

energy, N.m/m3/cycle

D = specific damping energy, work dissipated per unit volume and per cycle at

a point in the specimen, N.m/m3/cycle

Of these absolute damping energy units, the total energy DT usually is of

greatest interest to the engineer. The average damping energy DAvg depends

upon the shape of the specimen or structural element and upon the nature of

the stress distribution in it, even though the specimens are made of the same

material and have been subjected to the same stress distribution at the same

temperature and frequency. Thus, quoted values of the average damping

energy in the technical literature should be viewed with some reserve. The

specific damping energy D is the most fundamental of the three absolute units

of damping since it depends only on the material in question and not on the

shape, stress distribution, or volume of the vibrating element. However, most

of the methods discussed previously for measuring damping properties yield

data on total damping energy DT rather than on specific damping energy D.

Therefore, the development of the relationships between these quantities

assumes importance. If the specific damping energy is integrated throughout

the stressed volume,= ∫ (6.11)

This is a triple integral; dV = dx dy dz and D is regarded as a function of the

space coordinates x, y, z. If there is only one nonzero stress component, the

specific damping energy D may be considered a function of the stress level σ.

Then



= ∫ (6.12)

In this integration, V is the volume of material whose stress level is less than

σ. The integration is a single integral, and σd is the peak stress. The integrands

may be put in dimensionless form by introducing Dd, the specific damping

energy associated with the peak stress level reached anywhere in the specimen

during the vibration (i.e., the value of D corresponding to σ = σd). Then

= (6.13)

= ∫ (6.14)

The average damping energy is= = (6.15)

The relationship between the damping energies DT, DAvg, and D depends upon

the dimensionless damping energy integral α.The integrand of α may be

separated into two parts: (1) a damping function D/Dd which is a property of

the material and (2) a volume-stress function / which depends on

the shape of the part and the stress distribution.

Several approaches are available for performing a sensitivity analysis. The

one  presented  here  is  based  on  parameterizing  the  eigenvalue  problem.

Consider a conservative n-degree-of-freedom system defined by

M(α)q̈(t) + K(α)q(t) = 0 (6.16)

where  the  dependence  of  the  coefficient  matrices  on  the  design

parameter α is  indicated. The parameter α is considered to represent a change

in the matrix M and/or the matrix K. The related eigenvalue problem is



M (α)K(α)u (α) = λ (α)u (α) (6.17)

Here, the eigenvalue λ (α) and the eigenvector u (α) will also depend on the

parameter α.

The mathematical dependence is discussed in detail by Whitesell (1980). It is

assumed that the dependence is such that M, K, λ (α) and u (α) are all twice

differentiable with respect to the parameter α .

Proceeding, if u (α) is normalized with respect to the mass matrix,

differentiation of Equation with respect to the parameter α yields

α
(λ ) = u

α
(K) − λ

α
(M) u (6.18)

Here, the dependence of α has been suppressed for notational convenience.

The second derivative of λ can also be calculated as

ddα
(λ ) = 2u′

ddα
(K) − λ

ddα
(M) u′

+ u ddα
(K) − ddα

(λ ) ddα
(M) − λ

ddα
(M) u

(6.19)

The notation u’ denotes the derivative of the eigenvector with respect to u. The

expression for the second derivative of λ requires the existence and

computation of the derivative of the corresponding eigenvector. For the special

case where M is a constant, and with some manipulation (Whitesell, 1980), the

eigenvector derivative can be calculated from the related problem for the

eigenvector vi from the formula

α
(V ) = ∑ C (i, α)V (6.20)

where the vectors V are related to u by the mass transformation V = M1/2u
The coefficients C (i, α) in this expansion are given by



C (i, α) = ⎩⎪⎨
⎪⎧O ..

λ λ
u

α
u (6.21)

Where the matrix A is the symmetric matrix M−1/2KM−1/2 depending on α.

Above equations yield the sensitivity of the eigenvalues and eigenvectors of a

conservative system to changes in the stiffness matrix. More general and

computationally efficient methods for computing these sensitivities are

available in the literature. Adhikari and Friswell (2001) give formulae for

damped systems and reference to additional methods.

Another method for design of damping is taken as a laminated metal material,

which offers an effective method to increase the inherent level of damping in

sheet-metal components. To assist the product designer considering the use of

laminated metal material in place of traditional sheet metal, various practical

modeling techniques are available that can be used both as a damping

prediction and design optimization tool. Optimization of the laminate

construction, as with all constrained layer type treatments, is a function of

other parameters in addition to the actual properties of the viscoelastic

material. This complexity offers more design flexibility as the thickness and

type of the damping core as well as the constraining layers can be altered to

optimize effectiveness of the laminated metal product. Two specific

approaches are available to help assist in the selection and design of

viscoelastic-based damping treatments.

Simplified RKU approach:

One approach is to simplify a real world component down to an equivalent 3-

layer beam or plate system. This was first suggested by Ross, Kerwin, Ungar,

and the RKU method uses a fourth order differential equation for a uniform

beam with the sandwich construction of the 3-layer laminate system

represented as an equivalent complex stiffness. The equation for the flexural

rigidity, EI, of this system has been reported in many technical references, and

is therefore not duplicated here. The most common assumption made when

using this method is that the mode shapes of the theoretical structure are

sinusoidal in nature, therefore implying a simply-supported boundary



condition. When using this approach with other boundary conditions, which

may be necessary in working with actual structures, approximations must be

made in the results depending on the mode shape in question. The RKU

method is better suited as a damping indicator as opposed to a precise damping

predictor when applied to complex, real world structures. The goal is to use

this simplified method to develop design trends that will lead to the selection

of a damping material, constraining layers, and thickness which yield

optimized damping performance.

Modal Strain Energy: Another prediction method known as the Modal Strain

Energy (MSE) approach utilizes a finite element analysis (FEA) representation

of a structure as the basis for of modeling the damping effect. This method has

been shown to be an accurate predictor of damping levels in structures

comprising layers of elastic and viscoelastic elements. The MSE principle

states that the ratio of composite system loss factor to the viscoelastic material

loss factor for a given mode of vibration can be estimated from the ratio of

elastic strain energy in the viscoelastic elements to the total strain energy in the

model for a given mode. This is shown mathematically in the following

equation: Typically, the MSE approach is used in conjunction with an

undamped, normal modes analysis to compute the strain energy ratio. The

strain energies are determined from the relative mode shapes. It is assumed

that the viscoelastic properties are linear in terms of the dynamic strain rate.

= (6.22)

Where, s
m = System damping for nth mode of vibration

VEM = material damping for appropriate frequency and temperature

VEM
m = elastic strain energy stored in viscoelastic core

total
m = total strain energy for nth mode shape

Example 2

Consider the system discussed previously in example 1. Here, take M =I, and

K becomes



K = 3 −1−1 3 = K
The eigenvalues of the matrix are λ , = 2, 4 and the normalized eigenvectors

are  u1= v1=(1/√2)[1   1]T and u2=v2=(1/√2)[−1  1]T. It is desired to compute

the sensitivity of the natural frequencies and mode shapes of this system as a

result of a parameter change in the stiffness of the spring attached to ground.

To this end, suppose the new design results in a new stiffness matrix ofK(a) = 3 + α −11 3
Then ddα

(M) = 0 00 0
and ddα

(K) = 1 00 0
Following Equations (6.25) and (6.27), the derivatives of the eigen values and

eigenvectors become

dλdα
= 0.5, dλdα

= 0.5, dudα
= 14√2 −11 , dudα

= 14√2 11
These quantities are an indication of the sensitivity of the eigen solution to

changes in the matrix K.

To see this, substitute the preceding expressions into the expansions for λ (α)
and u (α) are,

λ (α) = 2 + 0.5α

λ (α) = 4 + 0.5α

u (α) = 0.707 11 + 0.177α −11
u (α) = 0.707 −11 − 0.177α 11



This last set of expressions allows the eigenvalues and eigenvectors to be

evaluated for any given parameter change α without having to resolve the

eigenvalue problem. These formulae constitute an approximate reanalysis of

the system.

It is interesting to note this sensitivity in terms of a percentage. Define the

percentage change in λ

λ (α) − λ
λ

100% = (2 + 0.5α) − 22 100% = (25%)α
If the change in the system is small, say α = 01, then the eigenvalue

λ changes by only 2.5%, and the eigenvalue λ changes by 1.25%. On the

other hand, the change in the elements of the eigenvector u is 2.5%. Hence,

in this case the eigenvector is more sensitive to parameter changes than the

eigenvalue is.

By computing higher-order derivatives of λ and u , more terms of the

expansion can be used, and greater accuracy in predicting the eigensolution of

the new system results. By using the appropriate matrix computations, the

subsequent evaluations of the eigenvalues and eigenvectors as the design is

modified can be carried out with substantially less computational effort

(reportedly of the order of n2 multiplications). The sort of calculation provided

by eigenvalue and eigenvector derivatives can provide an indication of how

changes to an initial design will affect the response of the system. In the

example, the shift in value of the first spring is translated into a percentage

change in the eigenvalues and hence in the natural frequencies. If the design of

the system is concerned with avoiding resonance, then knowing how the

frequencies shift with stiffness is critical.
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