Forming limit criteria

Tensile test only provides ductility, work hardening, but it is in a uniaxial tension with frictionless, which cannot truly represent material behaviours obtained from unequal biaxial stretching occurring in sheet metal forming. Sheet metal formability tests are designed to measure the ductility of a material under condition similar to those found in sheet metal forming.

Defects in Forming

Cracks
Radial cracks in the flanges and edge of the cup due to not sufficient ductility to withstand large circumferential shrinking.

Wrinkling of the flanges or the edges of the cup resulting from buckling of the sheet (due to circumferential compressive stresses) solved by using sufficient hold-down pressure to suppress the buckling.

Surface blemishes due to large surface area. EX: orange peeling especially in large grain sized metals because each grain tends to deform independently use finer grained metals.

Mechanical fibering has little effect on formability.

Crystallographic fibering or preferred orientation may have a large effect. EX: when bend line is parallel to the rolling direction, or earing in deep drawn cup due to anisotropic properties.

Simple Calculation Formulas:

Clearance in Sheet Metal Cutting

- Distance between the punch and die
- Typical values range between 4% and 8% of stock thickness
 - If too small, fracture lines pass each other, causing double burnishing and larger force
 - If too large, metal is pinched between cutting edges and excessive burr results

For a round blank of diameter D_b:

![Diagram of clearance in sheet metal cutting](image)
Blanking punch diameter = $D_b - 2c$
Blanking die diameter = D_b

For a round hole of diameter D_h:
Hole punch diameter = D_h
Hole die diameter = $D_h + 2c$

• Recommended clearance can be calculated by: $c = at$; where $c =$ clearance; $a =$ allowance; and $t =$ stock thickness

• Allowance a is determined according to type of metal

<table>
<thead>
<tr>
<th>Metal group</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100S and 5052S aluminum alloys, all tempers</td>
<td>0.045</td>
</tr>
<tr>
<td>2024ST and 6061ST aluminum alloys; brass, soft cold</td>
<td></td>
</tr>
<tr>
<td>rolled steel, soft stainless steel</td>
<td>0.060</td>
</tr>
<tr>
<td>Cold rolled steel, half hard; stainless steel, half</td>
<td>0.075</td>
</tr>
<tr>
<td>and full hard</td>
<td></td>
</tr>
</tbody>
</table>

Cutting Forces

$F=S*t*L; \text{ Where: } S= \text{ Shear strength}; t=\text{thickness}; L=\text{length of cutting edge}; \text{ Important to determine the press capacity (tonnage)}$If shear strength is not known cutting force can be estimated as: $F=0.7*TS*t*L$ Where $TS = \text{Ultimate tensile strength}$

Stretching during Bending

• If bend radius is small relative to stock thickness, metal tends to stretch during bending

• Important to estimate amount of stretching, so that final part length = specified dimension

• Problem: to determine the length of neutral axis of the part before bending Where,

$BA = 2\pi \frac{A}{360} (R + K_{ba}t)$

- If $R < 2t$, $K_{ba} = 0.33$
- If $R \geq 2t$, $K_{ba} = 0.50$

and K_{ba} is factor to estimate stretching
Bending Force

Maximum bending force estimated as follows:

Where,

- F = bending force
- TS = tensile strength of sheet metal
- w = part width in direction of bend axis
- t = stock thickness
- D = die opening dimension

$$F = \frac{K_B TS w t^2}{D}$$

- For V-bending, $K_B = 1.32$
- For edge bending, $K_B = 0.89$

Source: http://elearningatria.files.wordpress.com/2013/10/unit_7_notes.pdf