
Computational Motor Control: Dynamics 

Introduction 

Here we will talk about deriving the equations of motion for a one-joint and then two-

joint (planar) arm. We saw in earlier topics how to translate differential equations into 

Python code for simulation. Here we will be talking about how to derive the equations 

themselves. Then we will implement them in Python, and simulate the dynamical 

behaviour of the arm. For now we will still leave out muscles, and only talk about the 

dynamics of the arm linkage itself. Surprisingly, even a "simple" two-joint arm ends up 

having complex dynamical behaviour. 

Equations of motion for a one-joint arm 

Let's start with a simple one-joint planar arm (like an elbow joint), and let's put it in a 

vertical plane, with gravity acting down: 



 

Schematic of a simple one-joint arm in a vertical plane 

We have a single link of length l that is represented as a uniform rod of 

length l metres, with centre of mass m kg located r metres from the origin (about 

which the link rotates), and with rotational moment of inertia i (kgm2). The angle θ is 

the angle between the horizontal and the link, and we have the force of gravity g acting 

in the downward direction. 

There are many ways of deriving the equations of motion of a dynamical system, 

including the Lagrangian, Hamiltonian, and Newton-Euler approaches. They are all 

different ways to get to the same place (for our purposes), the equations of motion 

relating the inputs (e.g. forces and torques) to the dynamical behaviour (accelerations, 

velocities, positions) of a system. We will look at the Lagrangian approach here. A great 

practical book for looking at all sorts of examples of the Lagrangian approach, for all 

sorts of mechanical systems, is Schaum's Outline: Lagrangian Dynamics. 

http://en.wikipedia.org/wiki/Moment_of_inertia
http://en.wikipedia.org/wiki/Lagrangian_mechanics
http://en.wikipedia.org/wiki/Hamiltonian_mechanics
http://en.wikipedia.org/wiki/Newton%E2%80%93Euler_equations
http://www.amazon.ca/Schaums-Outline-Lagrangian-Dynamics-Wells/dp/0070692580


Note: if you are squeamish about the calculus, or you're just not that interested in the 

nuts and bolts of how to derive equations of motion, that's OK … just skip ahead 

to hereand see what the final equation of motion looks like. 

Optional: Euler-Lagrange Equation 

The really cool thing about the Lagrangian approach is that you can derive equations of 

motion using only: 

1. a characterization of the energy (kinetic & potential) of the system 

2. a description of the kinematics of the system 

3. running these through calculus 

The Euler-Lagrange equation gives the "generalized" equations of motion as: 

Qj=ddt(∂L∂qj˙)−(∂L∂qj) 

where j indexes into each "generalized coordinate", and where 

L=T−U 

and where T is the kinetic energy of the system, and U is the potential energy of the 

system. 

The basic idea is once you derive an expression for L, then you just run it through the 

derivatives in the Euler-Lagrange equation, to get the equations of motion in terms of 

the "generalized forces" Qj. I know that sounds a bit opaque, so let's run through a 

concrete example with our single-joint pendulum. 

Let's derive the two parts of L (T and U) and then we will see how to get the equations 

of motion by running L through the Euler-Lagrange equation to get generalized 

forces Qj. 

Kinetic Energy 

So first let's write down the kinetic energy T. There are two parts: the linear kinetic 

energy of the centre of mass m, and the rotational kinetic energy of the rod. 

 Linear kinetic energy 

http://www.gribblelab.org/compneuro/5_Computational_Motor_Control_Dynamics.html#sec-2-2
http://en.wikipedia.org/wiki/Kinetic_energy


We know that for a point mass (and we are representing our link's centre of 

mass as a point mass m kg located l2 metres away from a rotary joint), the 

kinetic energy is 12mv2 where v is velocity: 

TlinTlinTlin===12mv212m(x˙2+y˙2)12mx˙2+12my˙2 

 Rotational kinetic energy 

For rotation, kinetic energy is: 

Trot=12iθ˙2 

where i is the moment of inertia and θ˙ is the angular velocity. 

Putting them together, the total kinetic energy of the system is: 

T=12mx˙2+12my˙2+12iθ˙2 

We can transform the coordinates from extrinsic (x,y) (location of centre of 

mass) to intrinsic θ using the following relations, which we know from 

geometry: 

xy==rsinθ−rcosθ 

so if we substitute and simplify terms (not shown) we get: 

T=12mr2θ˙2+12iθ˙2 

Potential Energy 

Now let's write down the potential energy U. We know from basic physics that in 

general, the potential energy for a mass in earth's gravitational field is: 

U=mgh 

where m is mass (kg), g is the gravitational constant (9.81 m/s) and h is the height 

"above the ground". So for our rotating arm, let's define the "zero potential energy 

point" (like the "ground") when the pendulum is pointing straight down, i.e. when θ=0: 

U=mgr(1−cosθ) 

http://en.wikipedia.org/wiki/Potential_energy


Lagrangian 

So now we have the Lagrangian L=T−U is: 

L=T−U=12mr2θ˙2+12iθ˙2−mgr(1−cosθ) 

So to summarize, we have chosen our generalized coordinates to be in terms of the 

joint angle θ. Since we only have one degree of freedom in our system, in fact we only 

have one generalized coordinate, which is θ. The generalized forces Qj are just one, so 

we will write Q, and since we chose our generalized coordinate to be angular, θ, our 

generalized force Q is actually a torque (the rotational equivalent of a force). 

Now it's a matter of computing the derivative terms in the Euler-Lagrange equation to 

get an expression giving the torque of the system in terms of the system states. You 

can do this by hand if you're a calculus ninja, or use a symbolic computing package 

like SymPy to do it for you. 

∂L∂θ=−mgrsinθ 

and 

∂L∂θ˙=θ˙(i+mr2) 

and 

ddt(∂L∂θ˙)=θ¨(i+mr2) 

and remember the Euler-Lagrange equation: 

Qj=ddt(∂L∂qj˙)−(∂L∂qj) 

so plugging in the values from the calculus/algebra above, 

Q=θ¨(i+mr2)+mgrsinθ 

So this is our equation of motion, it gives us a relationship between generalized 

force Q (which is a torque), and the states of the system, (θ,θ˙,θ¨) (note 

actually θ˙doesn't appear in our equations of motion in this case). 

http://en.wikipedia.org/wiki/Torque


If you want to see the SymPy code for doing all this calculus, it is 

here: onejoint_lagrange.py 

Equation of motion 

Our equation of motion: 

Q=θ¨(i+mr2)+mgrsinθ 

where Q is joint torque (Nm), m is link mass (kg), l is link length (m), g is gravitational 

constant (m/s/s) and θ is joint angle (radians), gives joint torque as a function of state. 

This is actually the inverse dynamics equation. To say it differently, this is the equation 

we can use to answer the question, "what torque do I need at the joint (for example 

from muscles) in order to generate a given dynamic state?" 

For forward simulation of a dynamical system, we need the forward dynamics equation 

of motion. In other words, we need an equation that gives the derivatives of the system 

state(s) as a function of the system states themselves (and any other quantities, e.g. 

joint torque). 

We can easily solve our equation of motion for θ¨: 

θ¨=Q−mgrsinθi+mr2 

Note that if the torque Q is zero, in other words if there is no input torque to the 

system, then: 

θ¨=−mgrsinθi+mr2 

This characterizes the passive dynamics of the system (the dynamical behaviour of the 

system in the absence of any external driving torque). 

Simulating the dynamics of the one-joint arm 

Let's write a function, as we did earlier in the course for other systems, for the forward 

dynamics of our one-joint arm: 

from scipy.integrate import odeint 

def onejointarm(state,t): 

http://www.gribblelab.org/compneuro2012/code/onejoint_lagrange.py


   theta = state[0]      # joint angle (rad) 

   theta_dot = state[1]  # joint velocity (rad/s) 

   m = 1.65              # kg 

   r = 0.50              # link length (m) 

   g = 9.81              # gravitational constant (m/s/s) 

   i = 0.025             # moment of inertia (kg m m) 

   theta_ddot = -(m*g*r*sin(theta)) / (i + (m*r*r)) 

   return [theta_dot, theta_ddot] 

 

t = linspace(0.0,10.0,1001)   # 10 seconds sampled at 1000 Hz 

state0 = [90.0*pi/180.0, 0.0] # 90 deg initial angle, 0 deg/sec initial velocity 

state = odeint(onejointarm, state0, t) 

 

figure() 

plot(t,state*180/pi) 

legend(('theta','thetadot')) 

xlabel('TIME (sec)') 

ylabel('THETA (deg) & THETA_DOT (deg/sec)') 



 

Dynamics of passive one-joint arm 

Here's a little function that will animate the arm: 

def animate_arm(state,t): 

   l = 0.5 

   figure(figsize=(12,6)) 

   plot(0,0,'r.') 

   p, = plot((0,l*sin(state[0,0])),(0,-l*cos(state[0,0])),'b-') 

   tt = title("%4.2f sec" % 0.00) 

   xlim([-l-.05,l+.05]) 

   ylim([-l,.10]) 

   step = 3 

   for i in xrange(1,shape(state)[0]-10,step): 

      p.set_xdata((0,l*sin(state[i,0]))) 

      p.set_ydata((0,-l*cos(state[i,0]))) 

      tt.set_text("%4.2f sec" % (i*0.01)) 



      draw() 

 

animate_arm(state,t) 

 

Animation of passive one-joint arm 

Equations of motion for a two-joint arm 

To derive the equations of motion for a two-jointarm arm we will follow the same basic 

steps as above for the one-joint arm. Note again that we are now putting the arm in a 

vertical plane, with gravity pointing down. 



 

Schematic of a two-joint arm in a vertical plane 

Now we have two links of length l1 and l2 metres, each represented as a uniform rod 

of mass m1 and m2 kg, with the centres of mass located r1 and r2 metres from the 

points of rotation. Moments of inertia (not shown on figure) are i1 and i2. The shoulder 

joint is located at the origin, (0,0) metres, the elbow joint E at (ex,ey) and the 

hand H at (hx,hy). Gravity g is pointing "down" (−y) and joint angles (θ1,θ2) are as 

indicated. 

Note If you want to skip over the Lagrangian formulation you are welcome to, just skip 

right here to the equations of motion. 

Optional: The Lagrangian 

As before we will be using the Euler-Lagrange equation to derive the equations of 

motion: 

Qj=ddt(∂L∂qj˙)−(∂L∂qj) 

where j=1,2 (see below) and where 

L=T−U 

http://www.gribblelab.org/compneuro/5_Computational_Motor_Control_Dynamics.html#sec-4-2


Here we will have two generalized coordinates θ1 and θ2, and so our generalized 

forces Q1 and Q2 will correspond to shoulder torque and elbow torque, respectively. 

Again we must write expressions for linear and rotational kinetic energy. 

Linear kinetic energy 

In general, 

Tlinj=12mjv2j 

for j=1,2. Expanding vj: 

Tlin1Tlin2==12m1(x1˙2+y1˙2)12m2(x2˙2+y2˙2) 

Rotational kinetic energy 

For rotation, kinetic energy is: 

Trotj=12ijθj˙2 

so 

Trot1Trot2==12i1θ1˙212i2(θ1˙+θ2˙)2 

We can transform the coordinates from external (x,y) cartesian coordinates into our 

chosen (intrinsic, joint-based) generalized coordinate frame (θ1,θ2) based on the 

following relations from geometry (our forward kinematic equations): 

x1y1x2y2====r1sinθ1−r1cosθ1l1sinθ1+r2sin(θ1+θ2)−l1cosθ1−r2cos(θ1+θ2) 

Total kinetic energy is then: 

T=Tlin1+Tlin2+Trot1+Trot2 

Potential energy 

Just as for the onejoint arm we have potential energy of each link. 

U1U2==m1gr1(1−cosθ1)m2g(l1(1−cosθ1)+r2(1−cos(θ1+θ2))) 



Lagrangian 

We then define the lagrangian L as 

LL==T−UTlin1+Tlin2+Trot1+Trot2−U1−U2 

To get the equations of motion we then simply evaluate the Euler-Lagrange equation, 

once for each generalized force (torque): 

Q1Q2==ddt(∂L∂θ1˙)−(∂L∂θ1)ddt(∂L∂θ2˙)−(∂L∂θ2) 

For those that are interested, here is a SymPy program that implements the Lagrangian 

approach to get the equations of motion for a two-joint arm: 

twojointarm_lagrange.py 

Equations of Motion 

What we end up with (I won't take you step by through all the calculus) is two 

equations of motion, one for shoulder torque Q1 and one for elbow torque Q2. 

Q1Q2==M11θ1¨+M12θ2¨+C1+G1M21θ1¨+M22θ2¨+C2+G2 

where 

M11M12M22==M21==i1+i2+m1r21+m2(l21+r22+2l1r2cosθ2)i2+m2(r22+l1r2cosθ

2)i2+m2r22 

and 

C1C2==−m2l1θ2˙2r2sinθ2−2m2l1θ1˙θ2˙r2sinθ2m2l1θ1˙2r2sinθ2 

and 

G1G2==gsinθ1(m2l1+m1r1)+gm2r2sin(θ1+θ2)gm2r2sin(θ1+θ2) 

The M terms you can think of as inertial terms (they depend on joint accelerations). 

The C terms are usually called Coriolis-centrifugal terms, and the G terms are the 

terms due to gravity. 

Joint Interaction Torques 

http://www.gribblelab.org/compneuro2012/code/twojointarm_lagrange.py


Notice something interesting about these two-joint arm equations of motion: The 

torque at the shoulder Q1 depends not just on shoulder acceleration θ1¨ but also on 

elbow joint acceleration θ2¨. Similarly, elbow joint torque Q2 depends not just on 

elbow joint acceleration θ2¨ but also on shoulder joint acceleration θ1¨. These are 

inertial interaction torques. 

If you look at the Coriolis/centrifugal terms C you also see a similar pattern but for 

velocities. Shoulder torque Q1 depends (via C1) on elbow velocity θ2˙ and on the 

product of shoulder and elbow velocities θ1˙θ2˙. Elbow torque Q2 depends (via C2) on 

shoulder velocity squared θ1˙2. These are Coriolis-centrifugal interaction torques. 

So when torque at one joint depends on velocities and/or accelerations at another 

joint, we call these effects joint interaction torques. These interaction torques may be 

large, and significantly affect limb movement, especially when velocities and/or 

accelerations are large. 

Simulating the dynamics of the two-joint arm 

The equation of motion above for the two joint arm are inverse dynamics equations: 

they give the shoulder and elbow joint torques required (for example by muscles) to 

generate a particular arm kinematic trajectory. 

To get the forward dynamics equations of motion, we just need to do a little bit of 

algebra. Let's first write our inverse dynamics equations from above, in matrix form: 

Q=Mθ¨+C+G 

where 

Mθ¨CG====[M11M21M12M22][θ1¨θ2¨][C1C2][G1G2] 

Now to change our equation into a forward dynamics equation, we simply need to 

solve for θ¨: 

θ¨=(M−1)(Q−C−G) 

and for a passive arm with no external (driving) torques (e.g. from muscles) this 

simplifies to: 

θ¨=(M−1)(−C−G) 



Here is a Python function that implements the forward dynamics equations of a passive 

two-joint arm: 

def twojointarm(state,t,aparams): 

        """ 

        passive two-joint arm in a vertical plane 

        X is fwd(+) and back(-) 

        Y is up(+) and down(-) 

        gravity acts down 

        shoulder angle a1 relative to Y vert, +ve counter-clockwise 

        elbow angle a2 relative to upper arm, +ve counter-clockwise 

        """ 

        a1,a2,a1d,a2d = state 

        l1,l2 = aparams['l1'], aparams['l2'] 

        m1,m2 = aparams['m1'], aparams['m2'] 

        i1,i2 = aparams['i1'], aparams['i2'] 

        r1,r2 = aparams['r1'], aparams['r2'] 

        g = 9.81 

        M11 = i1 + i2 + (m1*r1*r1) + (m2*((l1*l1) + (r2*r2) + (2*l1*r2*cos(a2)))) 

        M12 = i2 + (m2*((r2*r2) + (l1*r2*cos(a2)))) 

        M21 = M12 

        M22 = i2 + (m2*r2*r2) 

        M = matrix([[M11,M12],[M21,M22]]) 

        C1 = -(m2*l1*a2d*a2d*r2*sin(a2)) - (2*m2*l1*a1d*a2d*r2*sin(a2)) 

        C2 = m2*l1*a1d*a1d*r2*sin(a2) 

        C = matrix([[C1],[C2]]) 

        G1 = (g*sin(a1)*((m2*l1)+(m1*r1))) + (g*m2*r2*sin(a1+a2)) 

        G2 = g*m2*r2*sin(a1+a2) 

        G = matrix([[G1],[G2]]) 

        ACC = inv(M) * (-C-G) 

        a1dd,a2dd = ACC[0,0],ACC[1,0] 

        return [a1d, a2d, a1dd, a2dd] 

Here is a full python program that will do a forward simulation of our passive two-joint 

arm, starting from specified initial shoulder and elbow joint angles and velocities. It 

will also show a rudimentary animation of the resulting motion of the arm. 

twojointarm_passive.py 

http://www.gribblelab.org/compneuro2012/code/twojointarm_passive.py


Does the brain know about interaction torques? (yes) 

Joint interaction torques can be large and can significantly affect limb motion. 

 Hollerbach, J. M., & Flash, T. (1982). Dynamic interactions between limb 

segments during planar arm movement. Biological cybernetics, 44(1), 67-77. 

There is empirical evidence from studies of human arm movement that the CNS 

neurally represents these effects, and compensates for them in a predictive manner, 

when planning and controlling arm movements: 

 Hasan, Z., & Karst, G. M. (1989). Muscle activity for initiation of planar, two-joint 

arm movements in different directions. Experimental Brain Research, 76(3), 

651-655. 

 Virji-Babul, N., & Cooke, J. D. (1995). Influence of joint interactional effects on 

the coordination of planar two-joint arm movements. Experimental brain 

research, 103(3), 451-459. 

 Sainburg, R. L., Ghilardi, M. F., Poizner, H. & Ghez, C. (1995). Control of limb 

dynamics in normal subjects and patients without proprioception. Journal of 

Neurophysiology, 73(2), 820-835. 

 Gribble, P. L., & Ostry, D. J. (1999). Compensation for interaction torques during 

single-and multijoint limb movement. Journal of Neurophysiology, 82(5), 2310-

2326. 

 Sainburg, R. L., Ghez, C., & Kalakanis, D. (1999). Intersegmental dynamics are 

controlled by sequential anticipatory, error correction, and postural 

mechanisms. Journal of Neurophysiology, 81(3), 1045-1056. 

 Koshland, G. F., Galloway, J. C., & Nevoret-Bell, C. J. (2000). Control of the wrist 

in three-joint arm movements to multiple directions in the horizontal plane. 

Journal of neurophysiology, 83(5), 3188-3195. 

Kinematic vs Dynamic models of motor control 

We saw in the previous topic about kinematic models of movement (e.g. minimum-

jerk) that computational models of movement at the kinematic level are capable of 

predicting a range of characteristics of naturalistic voluntary arm movements. 

Behavioural studies 

http://www.gribblelab.org/publications/1999_JNeurophysiol_gribble.pdf
http://www.gribblelab.org/publications/1999_JNeurophysiol_gribble.pdf


Here are two examples of behavioural studies looking at the question of whether the 

brain plans arm movements in terms of kinematics or dynamics. 

 Flanagan, J. R., & Rao, A. K. (1995). Trajectory adaptation to a nonlinear 

visuomotor transformation: evidence of motion planning in visually perceived 

space. Journal of neurophysiology, 74(5), 2174-2178. 

 Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). Are arm trajectories 

planned in kinematic or dynamic coordinates? An adaptation study. 

Experimental brain research, 103(3), 460-470. 

Computational models of Dynamics planning 

Here are examples of computational models that propose dynamic variables (e.g. 

torques) are used to plan arm movements. 

 Uno, Y., Kawato, M., & Suzuki, R. (1989). Formation and control of optimal 

trajectory in human multijoint arm movement. Biological cybernetics, 61(2), 89-

101. 

 Nakano, E., Imamizu, H., Osu, R., Uno, Y., Gomi, H., Yoshioka, T., & Kawato, M. 

(1999). Quantitative examinations of internal representations for arm trajectory 

planning: minimum commanded torque change model. Journal of 

Neurophysiology, 81(5), 2140-2155. 

 Kawato, M. (1999). Internal models for motor control and trajectory planning. 

Current opinion in neurobiology, 9(6), 718-727. 

 Wolpert, D. M., & Kawato, M. (1998). Multiple paired forward and inverse models 

for motor control. Neural Networks, 11(7), 1317-1329. 

 Wolpert, D. M., Miall, R. C., & Kawato, M. (1998). Internal models in the 

cerebellum. Trends in cognitive sciences, 2(9), 338-347. 

 Haruno, M., Wolpert, D. M., & Kawato, M. (2001). Mosaic model for sensorimotor 

learning and control. Neural computation, 13(10), 2201-2220. 

A cool paper on insect flight: 

 Berman, G. J., & Wang, Z. J. (2007). Energy-minimizing kinematics in hovering 

insect flight. Journal of Fluid Mechanics, 582(1), 153-168. 

Electrophysiological studies 



Empirical studies after the Georgopoulos series of papers investigated more 

systematically the question of kinematic- versus dynamic planning of arm movements, 

and the question of what motor brain areas represent. What investigators found is that 

in fact the activity of motor cortex cells is modulated by all sorts of "intrinsic" variables 

like background level of load force (e.g. mechanical loads) and arm orientation. 

 Kalaska, J. F., Cohen, D. A., Hyde, M. L., & Prud'Homme, M. (1989). A 

comparison of movement direction-related versus load direction-related activity 

in primate motor cortex, using a two-dimensional reaching task. The Journal of 

neuroscience, 9(6), 2080-2102. 

 Scott, S. H., & Kalaska, J. F. (1997). Reaching movements with similar hand paths 

but different arm orientations. I. Activity of individual cells in motor cortex. 

Journal of Neurophysiology, 77(2), 826-852. 

 Scott, S. H., Sergio, L. E., & Kalaska, J. F. (1997). Reaching movements with 

similar hand paths but different arm orientations. II. Activity of individual cells in 

dorsal premotor cortex and parietal area 5. Journal of neurophysiology, 78(5), 

2413-2426. 

 Gandolfo, F., Li, C. S., Benda, B. J., Schioppa, C. P., & Bizzi, E. (2000). Cortical 

correlates of learning in monkeys adapting to a new dynamical environment. 

Proceedings of the National Academy of Sciences, 97(5), 2259-2263. 

 Cabel, D. W., Cisek, P., & Scott, S. H. (2001). Neural activity in primary motor 

cortex related to mechanical loads applied to the shoulder and elbow during a 

postural task. Journal of neurophysiology, 86(4), 2102-2108. 

 Scott, S. H., Gribble, P. L., Graham, K. M., & Cabel, D. W. (2001). Dissociation 

between hand motion and population vectors from neural activity in motor 

cortex. Nature, 413(6852), 161-164. 

 Li, C. S. R., Padoa-Schioppa, C., & Bizzi, E. (2001). Neuronal correlates of motor 

performance and motor learning in the primary motor cortex of monkeys 

adapting to an external force field. Neuron, 30(2), 593-607. 

 Gribble, P. L., & Scott, S. H. (2002). Overlap of internal models in motor cortex 

for mechanical loads during reaching. Nature, 417(6892), 938-941. 

 Gandolfo, F., Li, C. S., Benda, B. J., Schioppa, C. P., & Bizzi, E. (2000). Cortical 

correlates of learning in monkeys adapting to a new dynamical environment. 

Proceedings of the National Academy of Sciences, 97(5), 2259-2263. 

Some argue for a mixed representation in primary motor cortex. 

http://www.gribblelab.org/publications/2001_Nature_scott.pdf
http://www.gribblelab.org/publications/2001_Nature_scott.pdf
http://www.gribblelab.org/publications/2001_Nature_scott.pdf
http://www.gribblelab.org/publications/2001_Nature_scott.pdf
http://www.gribblelab.org/publications/2002_Nature_gribble.pdf
http://www.gribblelab.org/publications/2002_Nature_gribble.pdf
http://www.gribblelab.org/publications/2002_Nature_gribble.pdf


 Kakei, S., Hoffman, D. S., & Strick, P. L. (1999). Muscle and movement 

representations in the primary motor cortex. Science, 285(5436), 2136-2139. 

Other motor brain areas appear to have different balance of kinematics vs dynamics 

representation 

 Thach, W. T. (1978). Correlation of neural discharge with pattern and force of 

muscular activity, joint position, and direction of intended next movement in 

motor cortex and cerebellum. Journal of neurophysiology, 41(3), 654-676. 

 Fortier, P. A., Kalaska, J. F., & Smith, A. M. (1989). Cerebellar neuronal activity 

related to whole-arm reaching movements in the monkey. Journal of 

neurophysiology, 62(1), 198-211. 

 Kalaska, J. F., Cohen, D. A. D., Prud'Homme, M., & Hyde, M. L. (1990). Parietal 

area 5 neuronal activity encodes movement kinematics, not movement 

dynamics. Experimental Brain Research, 80(2), 351-364. 

Some review articles on the topic: 

 Georgopoulos, A. P. (1995). Current issues in directional motor control. Trends 

in neurosciences, 18(11), 506-510. 

 Kalaska, J. F., Scott, S. H., Cisek, P., & Sergio, L. E. (1997). Cortical control of 

reaching movements. Current opinion in neurobiology, 7(6), 849-859. 

 Scott, S. H. (2003). The role of primary motor cortex in goal-directed 

movements: insights from neurophysiological studies on non-human primates. 

Current opinion in neurobiology, 13(6), 671-677. 

Computational Models: Cortical control 

A number of computational models have been described to explore how motor cortex 

controls arm movement. One of the common themes has been that models using 

motor cortex neurons to directly code muscle activation also predict population-vector 

coding of hand direction (and other dynamics parameters too). 

 Todorov, E. (2000). Direct cortical control of muscle activation in voluntary arm 

movements: a model. nature neuroscience, 3, 391-398. 

 Guigon, E., Baraduc, P., & Desmurget, M. (2007). Coding of movement‐and 

force‐related information in primate primary motor cortex: a computational 

approach. European Journal of Neuroscience, 26(1), 250-260. 



 Ajemian, R., Green, A., Bullock, D., Sergio, L., Kalaska, J., & Grossberg, S. (2008). 

Assessing the function of motor cortex: single-neuron models of how neural 

response is modulated by limb biomechanics. Neuron, 58(3), 414-428. 

Two-joint arm video game 

I coded up a little "game" that let's you control a two-joint arm with realistic limb 

dynamics, to hit targets that appear in the arm's workspace (not unlike many actual 

motor control experiments). 

 

Two-joint arm video game 

You use the [d,f,j,k] keys to control 4 "muscles" that deliver torques to the shoulder 

and elbow: 

 d = pectoralis (shoulder flexor) 

 f = posterior deltoid (shoulder extensor) 

 j = biceps (elbow flexor) 

 k = triceps (elbow extensor) 

there is no real muscle model right now, they just deliver torques to the joints 



The goal is to move the arm around the workspace so that the endpoint (hand) hits the 

red targets as they pop up. Hit as many red targets as you can before the clock runs 

down. 

Hit the spacebar to "reset" the arm to it's home position. This is handy in case your arm 

starts spinning like a propellor ;) although each spacebar-reset costs you 1 point. 

Apart from being a challenging "game", this is a nice little toy demo of the problem of 

what the brain is faced with when it has to figure out what time-varying neural control 

signals to send down to muscles, so that your hand moves to a desired location in 

cartesian space. 

Here is the game: twojointarm_game.py 

You will need to install the pygame add-on package for python. On a Debian-based 

GNU/Linux system (like Ubuntu) just type at a command-line prompt: 

sudo apt-get install python-pygame 

On Mac/Windows etc, see the pygame homepage for installation instructions. 

To start the game, at a command-line prompt type: 

python twojointarm_game.py 

At the end of the game it will print out your score to the command line. 

[ Computational Motor Control: Muscle Models ] 

 

 

Source: 

http://www.gribblelab.org/compneuro2012/5_Computational_Motor_Control_Dynamic

s.html 

http://www.gribblelab.org/compneuro2012/code/twojointarm_game.py
http://www.pygame.org/
http://www.gribblelab.org/compneuro2012/5_Computational_Motor_Control_Dynamics.html#6_Computational_Motor_Control_Muscle_Models.html

