
ANALYSIS OF STRAINS 

CONCEPT OF STRAIN 

Concept of strain : if a bar is subjected to a direct load, and hence a stress the bar will change in length. If the bar 

has an original length L and changes by an amount L, the strain produce is defined as follows: 

 

Strain is thus, a measure of the deformation of the material and is a nondimensional Quantity i.e. it has no units. It is 
simply a ratio of two quantities with the same unit. 

 

Since in practice, the extensions of materials under load are very very small, it is often convenient to measure the 

strain in the form of strain x 10
-6

 i.e. micro strain, when the symbol used becomes . 

Sign convention for strain: 

Tensile strains are positive whereas compressive strains are negative. The strain defined earlier was known as linear 
strain or normal strain or the longitudinal strain now let us define the shear strain. 

Definition: An element which is subjected to a shear stress experiences a deformation as shown in the figure below. 

The tangent of the angle through which two adjacent sides rotate relative to their initial position is termed shear strain. 
In many cases the angle is very small and the angle it self is used, ( in radians ), instead of tangent, so 

that  =  AOB -  A'OB' = 

Shear strain: As we know that the shear stresses acts along the surface. The action of the stresses is to produce or 

being about the deformation in the body consider the distortion produced b shear sheer stress on an element or 
rectangular block 



 

This shear strain or slide is and can be defined as the change in right angle. or The angle of deformation  is then 
termed as the shear strain. Shear strain is measured in radians & hence is non – dimensional i.e. it has no unit.So we 
have two types of strain i.e. normal stress & shear stresses. 

Hook's Law : 

A material is said to be elastic if it returns to its original, unloaded dimensions when load is removed. 

Hook's law therefore states that 

Stress ( )  strain( ) 

 

Modulus of elasticity : Within the elastic limits of materials i.e. within the limits in which Hook's law applies, it has 

been shown that 

Stress / strain = constant 

This constant is given by the symbol E and is termed as the modulus of elasticity or Young's modulus of elasticity 

Thus  

The value of Young's modulus E is generally assumed to be the same in tension or compression and for most 
engineering material has high, numerical value of the order of 200 GPa 

Poisson's ratio: If a bar is subjected to a longitudinal stress there will be a strain in this direction equal to E . 

There will also be a strain in all directions at right angles to  . The final shape being shown by the dotted lines. 



 

It has been observed that for an elastic materials, the lateral strain is proportional to the longitudinal strain. The ratio 
of the lateral strain to longitudinal strain is known as the poison's ratio . 

Poison's ratio ( ) =  lateral strain / longitudinal strain 

For most engineering materials the value of  his between 0.25 and 0.33. 

Three – dimensional state of strain : Consider an element subjected to three mutually perpendicular tensile 

stresses x , yand z as shown in the figure below. 

 

If y and z were not present the strain in the x direction from the basic definition of Young's modulus of Elasticity E 
would be equal to 

x= x/ E 

The effects of y and z in x direction are given by the definition of Poisson's ratio ‘  ' to be equal as y/ E 

and z/ E 

The negative sign indicating that if yand z are positive i.e. tensile, these they tend to reduce the strain in x direction 
thus the total linear strain is x direction is given by 

 

Principal strains in terms of stress: 

In the absence of shear stresses on the faces of the elements let us say that x , y , z are in fact the principal 
stress. The resulting strain in the three directions would be the principal strains. 



i.e. We will have the following relation.  

For Two dimensional strain: system, the stress in the third direction becomes zero i.e z = 0 or 3 = 0 

Although we will have a strain in this direction owing to stresses 1& 2 . 

Hence the set of equation as described earlier reduces to  

 

Hence a strain can exist without a stress in that direction 

 

Hydrostatic stress : The term Hydrostatic stress is used to describe a state of tensile or compressive stress equal in 

all directions within or external to a body. Hydrostatic stress causes a change in volume of a material, which if 

expressed per unit of original volume gives a volumetric strain denoted byv. So let us determine the expression for 
the volumetric strain. 

Volumetric Strain: 



 

Consider a rectangle solid of sides x, y and z under the action of principal stresses 1 , 2 , 3 respectively. 

Then 1 , 2 , and 3 are the corresponding linear strains, than the dimensions of the rectangle becomes 

( x + 1 . x ); ( y + 2 . y ); ( z + 3 . z ) 

hence the  

ALITER : Let a cuboid of material having initial sides of Length x, y and z. If under some load system, the sides 

changes in length by dx, dy, and dz then the new volume ( x + dx ) ( y + dy ) ( z +dz ) 

New volume = xyz + yzdx + xzdy + xydz 

Original volume = xyz 

Change in volume = yzdx +xzdy + xydz 

Volumetric strain = ( yzdx +xzdy + xydz ) / xyz = x+ y+ z 

Neglecting the products of epsilon's since the strains are sufficiently small. 

Volumetric strains in terms of principal stresses: 

As we know that 



 

Strains on an oblique plane 

(a) Linear strain 

              

Consider a rectangular block of material OLMN as shown in the xy plane. The strains along ox and oy are x and y , 

and xy is the shearing strain. 

Then it is required to find an expression for , i.e the linear strain in a direction inclined at  to OX, in terms 

of x ,y , xy and . 

Let the diagonal OM be of length 'a' then ON = a cos  and OL = a sin  , and the increase in length of those under 

strains arexacos  and ya sin  ( i.e. strain x original length ) respectively. 

If M moves to M', then the movement of M parallel to x axis is xacos  + xy sin and the movement parallel to the y 

axis is yasin  

Thus the movement of M parallel to OM , which since the strains are small is practically coincident with MM'. and this 
would be the summation of portions (1) and (2) respectively and is equal to 



 

This expression is identical in form with the equation defining the direct stress on any inclined 

plane  with x and y replacing x and y and ½ xy replacing xy i.e. the shear stress is replaced by half the shear 
strain 

Shear strain: To determine the shear stain in the direction OM consider the displacement of point P at the foot of the 

perpendicular from N to OM and the following expression can be derived as

 

In the above expression ½ is there so as to keep the consistency with the stress relations. 

Futher -ve sign in the expression occurs so as to keep the consistency of sign convention, because OM' moves 
clockwise with respect to OM it is considered to be negative strain. 

The other relevant expressions are the following : 



 

Let us now define the plane strain condition 

Plane Strain : 

In xy plane three strain components may exist as can be seen from the following figures: 

 

Therefore, a strain at any point in body can be characterized by two axial strains i.e x in x direction, y in y - 

direction and xy the shear strain. 

In the case of normal strains subscripts have been used to indicate the direction of the strain, and x , y are defined 
as the relative changes in length in the co-ordinate directions. 

With shear strains, the single subscript notation is not practical, because such strains involves displacements and 

length which are not in same direction.The symbol and subscript xy used for the shear strain referred to the x and y 

planes. The order of the subscript is unimportant. xy and yx refer to the same physical quantity. However, the sign 

convention is important.The shear strain xy is considered to be positive if it represents a decrease the angle between 
the sides of an element of material lying parallel the positive x and y axes. Alternatively we can think of positive shear 
strains produced by the positive shear stresses and viceversa. 

Plane strain : 

An element of material subjected only to the strains as shown in Fig. 1, 2, and 3 respectively is termed as the plane 
strain state. 

Thus, the plane strain condition is defined only by the componentsx ,y , xy :z = 0;xz= 0; yz= 0 

It should be noted that the plane stress is not the stress system associated with plane strain. The plane strain 
condition is associated with three dimensional stress system and plane stress is associated with three dimensional 
strain system. 



PRINCIPAL STRAIN 

For the strains on an oblique plane we have an oblique we have two equations which are identical in form with the 

equation defining the direct stress on any inclined plane  . 

 

Since the equations for stress and strains on oblique planes are identical in form, so it is evident that Mohr's stress 
circle construction can be used equally well to represent strain conditions using the horizontal axis for linear strains 
and the vertical axis for half the shear strain. 

It should be noted, however that the angles given by Mohr's stress circle refer to the directions of the planes on which 
the stress act and not the direction of the stresses themselves. 

The direction of the stresses and therefore associated strains are therefore normal (i.e. at 90
0
) to the directions of the 

planes. Since angles are doubled in Mohr's stress circle construction it follows therefore that for a true similarity of 
working a relative rotation of axes of 2 x 90

0
 = 180

0
 must be introduced. This is achieved by plotting positive sheer 

strains vertically downwards on the strain circle construction. 

The sign convention adopted for the strains is as follows: 

Linear Strains : extension - positive 

  compression - negative 

{ Shear of strains are taken positive, when they increase the original right angle of an unstrained element. } 

Shear strains : for Mohr's strains circle sheer strain xy - is +ve referred to x - direction the convention for the shear 

strains are bit difficult. The first subscript in the symbol xy usually denotes the shear strains associated with direction. 

e.g. in xy– represents the shear strain in x - direction and for yx– represents the shear strain in y - direction. If under 
strain the line associated with first subscript moves counter clockwise with respect to the other line, the shearing 
strain is said to be positive, and if it moves clockwise it is said to be negative. 

N.B: The positive shear strain is always to be drown on the top ofx .If the shear stain xy is given ] 

Moh's strain circle 

For the plane strain conditions can we derivate the following relations 



 

A typical point P on the circle given the normal strain and half the sheer strain 1/2xy associated with a particular 
plane. We note again that an angle subtended at the centre of Mohr's circle by an arc connecting two points on the 
circle is twice the physical angle in the material. 

Mohr strain circle : 

Since the transformation equations for plane strain are similar to those for plane stress, we can employ a similar form 
of pictorial representation. This is known as Mohr's strain circle. 

The main difference between Mohr's stress circle and stress circle is that a factor of half is attached to the shear 
strains. 



 

Points X' and Y' represents the strains associated with x and y directions with  and xy /2 as co-ordiantes 

Co-ordinates of X' and Y' points are located as follows : 

 

In x – direction, the strains produced, the strains produced by x,and xy are x and  xy /2 

where as in the Y - direction, the strains are produced by y and + xy are produced by y and + xy 

These co-ordinated are consistent with our sign notation ( i.e. + ve shear stresses produces produce +ve shear strain 
& vice versa ) 

on the face AB is xy+ve i.e strains are ( y, +xy /2 ) where as on the face BC,xy is negative hence the strains are 

(x xy /2 ) 



 

A typical point P on the circle gives the normal strains and half the shear strain, associated with a particular plane we 

must measure the angle from x – axis (taken as reference) as the required formulas for  ,1/2  have been derived 
with reference to x-axis with angle measuring in the c.c.W direction 

 

CONSTRUCTION : 

In this we would like to locate the points x' & y' instead of AB and BC as we have done in the case of Mohr's stress 
circle. 

steps 

1. Take normal or linear strains on x-axis, whereas half of shear strains are plotted on y-axis. 

2. Locate the points x' and y' 

3. Join x' and y' and draw the Mohr's strain circle 

4. Measure the required parameter from this construction. 



 

Note: positive shear strains are associated with planes carrying positive shear stresses and negative strains with 
planes carrying negative shear stresses. 

ILLUSTRATIVE EXAMPLES : 

1. At a certain point, a material is subjected to the following state of strains: 

x = 400 x 10
-6

 units 

y = 200 x 10
-6

 units 

xy = 350 x 10
-6

 radians 

Determine the magnitudes of the principal strains, the direction of the principal strains axes and the strain on an axis 
inclined at 30

0
 clockwise to the x – axis. 

Solution: 

Draw the Mohr's strain circle by locating the points x' and y' 



 

By Measurement the following values may be computed 

1 = 500 X 10
-6

 units 

2 = 100 x 10
-6

 units 

1 = 60
0
 /2 = 30

0
 

2 = 90 + 30 = 12
0
 

30 = 200 x 10
-6 

units 

The angles being measured c.c.w. from the direction of  x. 

PROB 2. 

A material is subjected to two mutually perpendicular strains x = 350 x10
-6

 units and y = 50 x 10
-6

 units together 

with an unknown sheer strain xy if the principal strain in the material is 420 x 10
-6

 units Determine the following. 

(a)  Magnitude of the shear strain 

(b)  The other principal strain 

(c)  The direction of principal strains axes 

(d)  The magnitude of the principal stresses 

If E = 200 GN / m
2
; = 0.3 

Solution : 



The Mohr's strain circle can be drawn as per the procedure described earlier. from the graphical construction, the 
following results may bre obtained : 

(i) Shear strain xy = 324 x 10
-6 

radians 

(ii) other principal strain = -20 x 10
-6

 

(iii)  direction of principal strain = 47
0
 / 2 = 23

0
 30' 

(iv) direction of other principal strain = 90
0
 +23

0
 30'  = 113

0
 30' 

In order to determine the magnitude of principle stresses, the computed values of 1and 2 from the graphical 
construction may be substituted in the following expressions 

 

Use of strain Gauges : 

Although we can not measure stresses within a structural member, we can measure strains, and from them the 
stresses can be computed, Even so, we can only measure strains on the surface. For example, we can mark points 
and lines on the surface and measure changes in their spacing angles. In doing this we are of course only measuring 
average strains over the region concerned. Also in view of the very small changes in dimensions, it is difficult to 
archive accuracy in the measurements 

In practice, electrical strain gage provide a more accurate and convenient method of measuring strains. 

A typical strain gage is shown below. 

 

The gage shown above can measure normal strain in the local plane of the surface in the direction of line PQ, which 
is parallel to the folds of paper. This strain is an average value of for the region covered by the gage, rather than a 
value at any particular point. 



The strain gage is not sensitive to normal strain in the direction perpendicular to PQ, nor does it respond to shear 
strain. therefore, in order to determine the state of strain at a particular small region of the surface, we usually need 
more than one strain gage. 

To define a general two dimensional state of strain, we need to have three pieces of information, such 

asx ,y and xy referred to any convenient orthogonal co-ordinates x and y in the plane of the surface. We 
therefore need to obtain measurements from three strain gages. These three gages must be arranged at different 
orientations on the surface to from a strain rossett. Typical examples have been shown, where the gages are 
arranged at either 45

0
 or 60

0
 to each other as shown below : 

 

A group of three gages arranged in a particular fashion is called a strain rosette. Because the rosette is mounted on 
the surface of the body, where the material is in plane stress, therefore, the transformation equations for plane strain 
to calculate the strains in various directions. 

Knowing the orientation of the three gages forming a rosette, together with the in – plane normal strains they record, 
the state of strain at the region of the surface concerned can be found. Let us consider the general case shown in the 
figure below, where three strain gages numbered 1, 2, 3, where three strain gages numbered 1, 2, 3 are arranged at 

an angles of 1 , 2 , 3 measured c.c.w from reference direction, which we take as x – axis. 

Now, although the conditions at a surface, on which there are no shear or normal stress components. Are these of 
plane stress rather than the plane strain, we can still use strain transformation equations to express the three 

measured normal strains in terms of strain components x , y , z and xy referred to x and y co-ordiantes as 



 

 

This is a set of three simultaneous linear algebraic equations for the three unknows x,y , xy to solve these 
equation is a laborious one as far as manually is concerned, but with computer it can be readily done.Using these 
later on, the state of strain can be determined at any point. 

Let us consider a 45
0
 degree stain rosette consisting of three electrical – resistance strain gages arranged as shown 

in the figure below : 

 

The gages A, B,C measure the normal strainsa , b , c in the direction of lines OA, OB and OC. 

Thus 



 

Thus, substituting the relation (3) in the equation (2) we get 

xy = 2b( a + c ) and other equation becomes x = a ; y= c 

Since the gages A and C are aligned with the x and y axes, they give the strains x and y directly 

Thus, x , y and xy can easily be determined from the strain gage readings. Knowing these strains, we can calculate 
the strains in any other directions by means of Mohr's circle or from the transformation equations. 

The 60
0
 Rossett: 

For the 60
0
 strain rosette, using the same procedure we can obtain following relation. 

 

 

Source: http://nptel.ac.in/courses/Webcourse-contents/IIT-

ROORKEE/strength%20of%20materials/homepage.htm 


