THERMISTORS AND LVDT

Basically thermistor is a contraction of a word 'thermal resistors', The resistors depending on temperature are thermal resistors. Thus resistance thermometers are also thermistors having positive -temperature coefficients. But generally the resistors having negative temperature coefficients (NTC) are called thermistors. The resistance of a thermistor decreases as temperature increases. The NTC of thermistors can be as large as few percent per degree celcius change in temperature. Thus the thermistors are very sensitive and can detect very small changes in temperature too.

Construction of thermistor:
Thermistors are composed of a sintered mixture of metallic oxides, such as manganese, nickel, cobalt, copper, iron, and uranium. Their resistances at ambient temperature may range from 100 n to 100 ill. Thermistors are available in a wide variety of shapes and sizes as shown in the Fig. 8.29. Smallest in size are the beads with a diameter of 0.15 mm to 1.25 mm. Beads may be sealed in the tips of solid glass rods to form probes. Disks and washers are made by pressing thermistor materia~ under high pressure into Hat cylindrical shapes. Washers can be placed in series or in parallel to increase power dissipation rating.

Thermistors are well suited for precision temperature measurement, temperature control, and temperature compensation, because of their. very large change in resistance with temperature. They are widely used for measurements in the temperature range -1000 C to +2000 C. The measurement of the change in resistance with temperature is carried out with a Wheatstone bridge.
Linear variable differential transformer (LVDT)

(a) Disc

(b) Probe

(c) Bead type

(d) Rod

(e) Washer type

Linear variable differential transformer (LVDT)
When an externally applied force moves the core to the left-hand position, more magnetic flux links the left-hand coil than the right-hand coil. The emf induced in the left-hand coil, $E_s$, is therefore larger than the induced emf of the right-hand coil, $E_{s2}$. The magnitude of the output voltage is then equal to the difference between the two secondary voltages and it is in phase with the voltage of the left-hand coil.

Source: http://elearningatia.files.wordpress.com/2013/10/ece-iii-electronic-instrumentation-10it35-notes.pdf