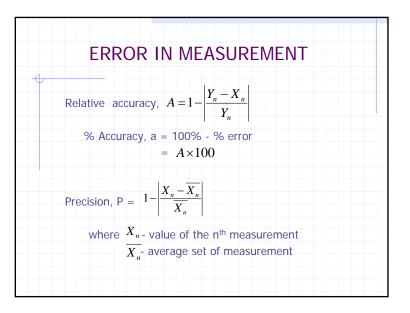
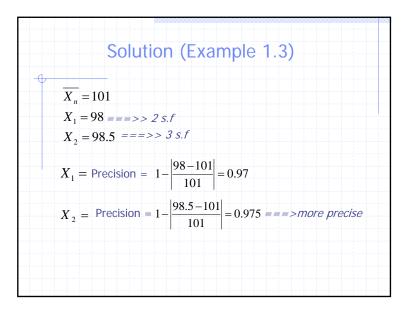

	OBJECTIVES
	At the end of this chapter, students should be able to:
1	Explain the static and dynamic characteristics of an instrument.
2.	Calculate and analyze the measurement error, accuracy, precision and limiting error.
3.	Describe the basic elements of electronic instrument.

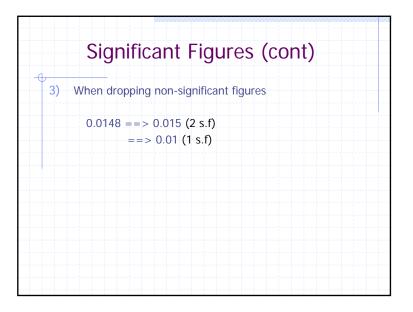


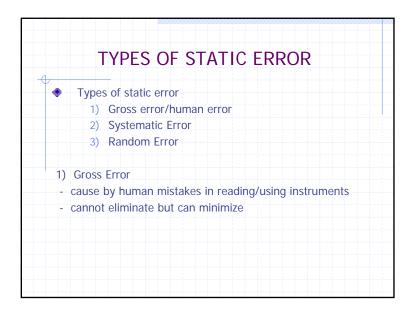


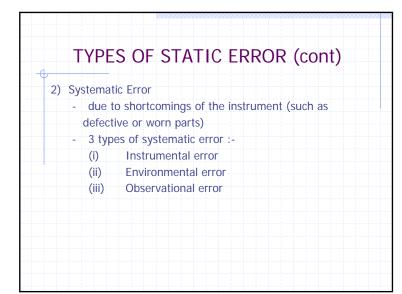
	Example 1.1
	Example 1.1
0	Chien superted valtage value serves a register is 201/
	Given expected voltage value across a resistor is 80V.
	The measurement is 79V. Calculate,
	i. The absolute error
	ii. The % of error
	iii. The relative accuracy
	iv. The % of accuracy

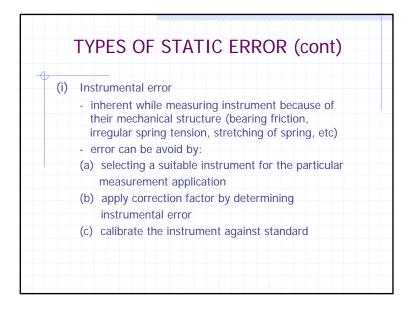
Solution (Example 1.1)
Given that , expected value = 80V measurement value = 79V
i. Absolute error, $e = Y_n - X_n = 80V - 79V = 1V$
ii. % error = $\left \frac{Y_n - X_n}{Y_n}\right \times 100 = \frac{80 - 79}{80} \times 100 = 1.25\%$
iii. Relative accuracy, $A = 1 - \left \frac{Y_n - X_n}{Y_n} \right = 0.9875$
% accuracy, a = A x 100% = 0.9875 x 100% = 98.75%

Example 1.2		
From the value in table 1.1 calculate	Tabl	e 1.1
the precision of 6 th measurement?	No	X _n
	1	98
Solution	2	101
- Solution	3	102
	4	97
the average of measurement value	5	101
the average of measurement value $\overline{X_n} = \frac{98 + 101 + \dots + 99}{10} = \frac{1005}{10} = 100.5$	6	100
ⁿ 10 10	7	103
the 6 th reading	8	98
	9	106
the 6 th reading Precision = $1 - \frac{ 100 - 100.5 }{100.5} = 1 - \frac{0.5}{100.5} = 0.995$	10	99

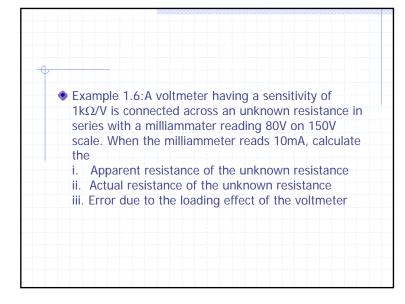

	Significant Figures
۲	Significant figures convey actual information regarding the magnitude and precision of quantity
•	More significant figure represent greater precision of measurement
Exa	mple 1.3
	Find the precision value of X ₁ and X ₂ ? $\overline{X_n} = 101$
	$X_1 = 98 = = = >> 2 \ s.f$
	$X_2 = 98.5 = = = >> 3 \ s.f$

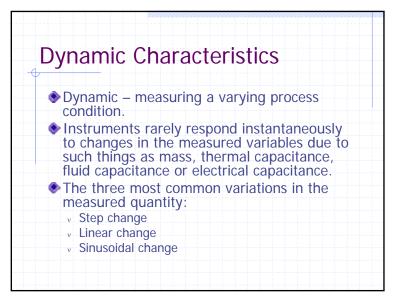



	Significant Figures (cont)
Rul 1)	es regarding significant figures in calculation For adding and subtraction, all figures in columns to the right of the last column in which all figures are significant should be dropped
	Example 1.4 $V_1 = 6.31 V$ $+ V_2 = 8.736 V$
	Therefore $V_T = 15.046 V$ $\approx 15.05 V$


	multiplication and div ificant figures as the 1.5		5
Example	1.5		
	n the value given bel nd power for R ₁ ?	ow, calculat	te the value for R ₁
	I = 0.0148 A		.f
	$V_1 = 6.31 V =$ $V_2 = 8.736 V =$		

Solution (Example 1.5)
 $R_1 = \frac{V_1}{I} = \frac{6.31V}{0.0148 A} = 426.35 = 426 \Omega = = > 3 \text{ s.f}$
$R_2 = \frac{V_2}{I} = \frac{8.736V}{0.0148A} = 590.27 = 590\Omega = = > 3 \text{ s.f}$
$P_{1} = V_{1} \times I = (6.31V) \times (0.0148A)$ = 0.09339
= 0.0934 ===> 3 s.f

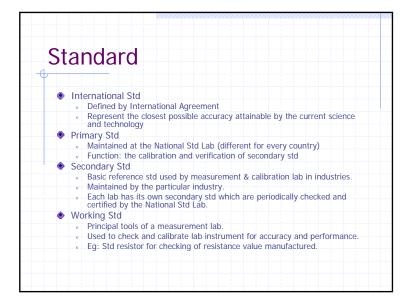


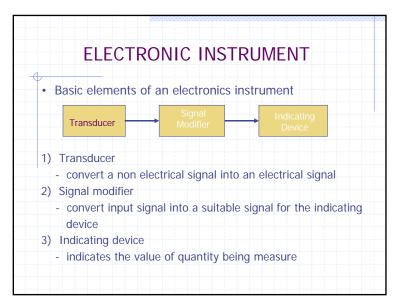


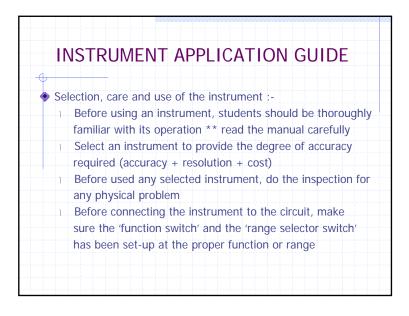
	TYPES OF STATIC ERROR (cont)
- ((ii)	 Environmental error due to external condition effecting the measurement including surrounding area condition such as change in temperature, humidity, barometer pressure, etc to avoid the error :- (a) use air conditioner (b) sealing certain component in the instruments (c) use magnetic shields
(iii)	Observational error - introduce by the observer - most common : parallax error and estimation error (while reading the scale)

 a) Random error due to unknown causes, occur when all systematic error has accounted accumulation of small effect, require at high degree accuracy can be avoid by 		
error has accountedaccumulation of small effect, require at high degree accuracy		on all customatic
 accumulation of small effect, require at high degree accuracy 		en all systematic
accuracy		
		ire at high degree of
- can be avoid by		
	be avoid by	
(a) increasing number of reading	increasing number of reading	g
(b) use statistical means to obtain best approximation	use statistical means to obta	in best approximation
of true value	of true value	
of the value		

ynamic Characteristics	-0
The dynamic characteristics of an instrument are:	 The accuration guarantee of full scal
v Speed of response v Dynamic error	E.g manuf
 ω The difference between the true and measured value with no static error. 	to be accu deflection
v Lag – response delay	For readin
 Fidelity – the degree to which an instrument indicates the changes in the measured variable without dynamic error (faithful reproduction). 	error incre


	LIMITING ERROR
-	
4	The accuracy of measuring instrument is guaranteed within a certain percentage (%)
	of full scale reading
	E.g manufacturer may specify the instrument to be accurate at ±2 % with full scale deflection
4	For reading less than full scale, the limiting error increases


	LIMITING ERROR (cont)
E	kample 1.6
	Given a 600 V voltmeter with accuracy $\pm 2\%$ full scale. Calculate limiting error when the instrument is used to measure a voltage of 250V?
So	plution
	The magnitude of limiting error, $0.02 \times 600 = 12V$ Therefore, the limiting error for $250V = 12/250 \times 100 = 4.8\%$


LIMITING ERROR (cont)
Example 1.7
A voltmeter reading 70V on its 100V range and an ammeter reading 80mA on its 150mA range are used to determine the power dissipated in a resistor. Both of these instruments are quaranteed to be accurate within \pm 1.5% at full scale deflection. Determine the limiting error of the power.
Solution
The limiting error for the power = $2.143\% + 2.813\%$ = 4.956%

	LIMITING ERROR (cont)
- 	Example 1.8
	Given for certain measurement, a limiting error for voltmeter at 70V is 2.143% and a limiting error for ammeter at 80mA is 2.813%. Determine the limiting error of the power.
	Solution
	The limiting error for the power = $2.143\% + 2.813\%$ = 4.956%

St	andard
۲	A standard is a known accurate measure of physical quantity.
۲	Standards are used to determine the values of other
	physical quantities by the comparison method.
۲	All standards are preserved at the International
	Bureau of Weight and Measures (BIMP), Paris.
	http://www1.bipm.org/en/home
٠	Four categories of standard:
	v International Standard
	v Primary Standard
	 Secondary Standard
	Working Standard

Prac	tice
	A voltmeter has an accuracy of 98% in
1	ull-scale measurement readings.
a)	If the voltmeter gives measurement reading of 200V at the range of 500V, calculate the absolute error of the measurement.
b)	Calculate the percent error for the reading in (a)