

ALTHOUGH THE BASIC IDEAS of object-oriented programming are reasonably
simple and clear, they are subtle, and they take time to get used to. And unfortunately,
beyond the basic ideas there are a lot of details. This section and the next cover more
of those annoying details. You should not necessarily master everything in these two
sections the first time through, but you should read it to be aware of what is possible.
For the most part, when I need to use this material later in the text, I will explain it
again briefly, or I will refer you back to it. In this section, we'll look at two
variables, this andsuper, that are automatically defined in any instance method.

5.6.1 The Special Variable this

What does it mean when you use a simple identifier such
as amount or process() to refer to a variable or method? The answer depends on
scope rules that tell where and how each declared variable and method can be
accessed in a program. Inside the definition of a method, a simple variable name
might refer to a local variable or parameter, if there is one "in scope," that is, one
whose declaration is in effect at the point in the source code where the reference
occurs. If not, it must refer to a member variable of the class in which the reference
occurs. Similarly, a simple method name must refer to a method in the same class.

A static member of a class has a simple name that can only be used inside the class
definition; for use outside the class, it has a full name of the form class-name.simple-
name. For example, "Math.PI" is a static member variable with simple name "PI"
in the class "Math". It's always legal to use the full name of a static member, even
within the class where it's defined. Sometimes it's even necessary, as when the simple
name of a static member variable is hidden by a local variable or parameter of the
same name.

Instance variables and instance methods also have simple names. The simple name of
such an instance member can be used in instance methods in the class where the
instance member is defined (but not in static methods). Instance members also have
full names -- but remember that instance variables and methods are actually contained
in objects, not classes. The full name of an instance member starts with a reference to
the object that contains the instance member. For example, if std is a variable that
refers to an object of type Student, then std.test1 could be the full name of an

http://math.hws.edu/javanotes/c5/s7.html

instance variable named test1 that is contained in that object. Inside
the Student class, the same variable could be referred to simply as test1. But when
just the simple name is used, where is the object that contains the variable? As an
instance variable, test1 is not a part of the Student class itself; any
actual test1 variable has to be contained in some object of type student.

The solution to this riddle is simple: Suppose that the reference to "test1" occurs in
the definition of some instance method. As with instance variables, only the definition
of the instance method is in the class; the actual method that gets executed has to be
thought of as belonging to some particular object of type Student. When that method
gets executed, the occurrence of the name "test1" refers to the test1 variablein
that same object. (This is why simple names of instance members cannot be used in
static methods -- when a static method is executed, there is no object around and
hence no actual instance members to refer to!)

This leaves open the question of full names for instance members inside the same
class where they are defined. We need a way to refer to "the object that contains this
method." Java defines a special variable named this for just this purpose, which is
used in the source code of an instance method to refer to the object that contains the
method. This intent of the name, "this," is to refer to "this object," the one right here
that this very method is in. If var is an instance variable in the same object as the
method, then "this.var" is a full name for that variable. If otherMethod() is
an instance method in the same object, thenthis.otherMethod() could be used
to call that method. Whenever the computer executes an instance method, it
automatically sets the variable this to refer to the object that contains the method.

One common use of this is in constructors. For example:

public class Student {

 private String name; // Name of the student.

 public Student(String name) {
 // Constructor. Create a student with specified name.
 this.name = name;
 }
 .
 . // More variables and methods.
 .
}

In the constructor, the instance variable called name is hidden by a formal parameter.
However, the instance variable can still be referred to by its full name, this.name.
In the assignment statement "this.name = name", the value of the formal

parameter, name, is assigned to the instance variable, this.name. This is
considered to be acceptable style: There is no need to dream up cute new names for
formal parameters that are just used to initialize instance variables. You can use the
same name for the parameter as for the instance variable.

There are other uses for this. Sometimes, when you are writing an instance method,
you need to pass the object that contains the method to a subroutine, as an actual
parameter. In that case, you can use thisas the actual parameter. For example, if you
wanted to print out a string representation of the object, you could say
"System.out.println(this);". If you want to add it to an ArrayList lst,
you could saylst.add(this). Or you could assign the value of this to another
variable in an assignment statement. In fact, you can do anything with this that you
could do with any other variable, except change its value.

5.6.2 The Special Variable super

Java also defines another special variable, named "super", for use in the definitions
of instance methods. The variable super is for use in a subclass.
Like this, super refers to the object that contains the method. But it's forgetful. It
forgets that the object belongs to the class you are writing, and it remembers only that
it belongs to the superclass of that class. The point is that the class can contain
additions and modifications to the superclass. super doesn't know about any of those
additions and modifications; it can only be used to refer to methods and variables in
the superclass.

Let's say that the class that you are writing contains an instance method
named doSomething(). Consider the subroutine call
statement super.doSomething(). Now, super doesn't know anything about
thedoSomething() method in the subclass. It only knows about things in the
superclass, so it tries to execute a method named doSomething() from the
superclass. If there is none -- if the doSomething()method was an addition rather
than a modification -- you'll get a syntax error.

The reason super exists is so you can get access to things in the superclass that
are hidden by things in the subclass. For example, super.var always refers to an
instance variable named var in the superclass. This can be useful for the following
reason: If a class contains an instance variable with the same name as an instance
variable in its superclass, then an object of that class will actually contain two
variables with the same name: one defined as part of the class itself and one defined as

part of the superclass. The variable in the subclass does not replace the variable of the
same name in the superclass; it merely hides it. The variable from the superclass can
still be accessed, using super.

When you write a method in a subclass that has the same signature as a method in its
superclass, the method from the superclass is hidden in the same way. We say that the
method in the subclass overrides the method from the superclass. Again,
however, super can be used to access the method from the superclass.

The major use of super is to override a method with a new method that extends the
behavior of the inherited method, instead of replacing that behavior entirely. The new
method can use super to call the method from the superclass, and then it can add
additional code to provide additional behavior. As an example, suppose you have
a PairOfDice class that includes a roll() method. Suppose that you want a
subclass, GraphicalDice, to represent a pair of dice drawn on the computer screen.
The roll() method in the GraphicalDice class should do everything that
the roll() method in the PairOfDice class does. We can express this with a call
to super.roll(), which calls the method in the superclass. But in addition to that,
the roll() method for a GraphicalDice object has to redraw the dice to show the
new values. The GraphicalDice class might look something like this:

public class GraphicalDice extends PairOfDice {

 public void roll() {
 // Roll the dice, and redraw them.
 super.roll(); // Call the roll method from
PairOfDice.
 redraw(); // Call a method to draw the dice.
 }
 .
 . // More stuff, including definition of redraw().
 .
}

Note that this allows you to extend the behavior of the roll() method even if you
don't know how the method is implemented in the superclass!

Here is a more complete example. The applet at the end of Section 4.7 shows a
disturbance that moves around in a mosaic of little squares. As it moves, each square
that it visits becomes a brighter shade of green. The result looks interesting, but I
think it would be prettier if the pattern were symmetric. A symmetric version of the
applet is shown at the bottom of Section 5.7. The symmetric applet can be programmed
as an easy extension of the original applet.

http://math.hws.edu/javanotes/c4/s7.html
http://math.hws.edu/javanotes/c5/s7.html

In the symmetric version, each time a square is brightened, the squares that can be
obtained from that one by horizontal and vertical reflection through the center of the
mosaic are also brightened. This picture might make the symmetry idea clearer:

The four red squares in the picture, for example, form a set of such symmetrically
placed squares, as do the purple squares and the green squares. (The blue square is at
the center of the mosaic, so reflecting it doesn't produce any other squares; it's its own
reflection.)

The original applet is defined by the class RandomBrighten. In that class, the actual
task of brightening a square is done by a method called brighten().
If row and col are the row and column numbers of a square, then
"brighten(row,col);" increases the brightness of that square. All we need is a
subclass of RandomBrighten with a modified brighten() routine. Instead of just
brightening one square, the modified routine will also brighten the horizontal and
vertical reflections of that square. But how will it brighten each of the four individual
squares? By calling the brighten() method from the original class! It can do this
by calling super.brighten().

There is still the problem of computing the row and column numbers of the horizontal
and vertical reflections. To do this, you need to know the number of rows and the
number of columns. The RandomBrightenclass has instance variables
named ROWS and COLUMNS to represent these quantities. Using these variables, it's
possible to come up with formulas for the reflections, as shown in the definition of
the brighten()method below.

Here's the complete definition of the new class:

public class SymmetricBrighten extends RandomBrighten {

 /**
 * Brighten the specified square, at position (row,col) and
its
 * horizontal and vertical reflections. This overrides the
 * brighten() method from the RandomBrighten class, which
just

 * brightens one square.
 */
 void brighten(int row, int col) {
 super.brighten(row, col);
 super.brighten(ROWS - 1 - row, col);
 super.brighten(row, COLUMNS - 1 - col);
 super.brighten(ROWS - 1 - row, COLUMNS - 1 - col);
 }

} // end class SymmetricBrighten

This is the entire source code for the applet!

5.6.3 Constructors in Subclasses

Constructors are not inherited. That is, if you extend an existing class to make a
subclass, the constructors in the superclass do not become part of the subclass. If you
want constructors in the subclass, you have to define new ones from scratch. If you
don't define any constructors in the subclass, then the computer will make up a default
constructor, with no parameters, for you.

This could be a problem, if there is a constructor in the superclass that does a lot of
necessary work. It looks like you might have to repeat all that work in the subclass!
This could be a real problem if you don't have the source code to the superclass, and
don't know how it works. It might look like an impossible problem, if the constructor
in the superclass uses private member variables that you don't even have access to
in the subclass!

Obviously, there has to be some fix for this, and there is. It involves the special
variable, super. As the very first statement in a constructor, you can use super to
call a constructor from the superclass. The notation for this is a bit ugly and
misleading, and it can only be used in this one particular circumstance: It looks like
you are calling super as a subroutine (even though super is not a subroutine and
you can't call constructors the same way you call other subroutines anyway). As an
example, assume that the PairOfDice class has a constructor that takes two integers as
parameters. Consider a subclass:

public class GraphicalDice extends PairOfDice {

 public GraphicalDice() { // Constructor for this class.

 super(3,4); // Call the constructor from the
 // PairOfDice class, with parameters 3,
4.

 initializeGraphics(); // Do some initialization
specific
 // to the GraphicalDice
class.
 }
 .
 . // More constructors, methods, variables...
 .
}

The statement "super(3,4);" calls the constructor from the superclass. This call
must be the first line of the constructor in the subclass. Note that if you don't explicitly
call a constructor from the superclass in this way, then the default constructor from
the superclass, the one with no parameters, will be called automatically. (And if no
such constructor exists in the superclass, the compiler will consider it to be a syntax
error.)

This might seem rather technical, but unfortunately it is sometimes necessary. By the
way, you can use the special variable this in exactly the same way to call another
constructor in the same class. This can be useful since it can save you from repeating
the same code in several different constructors.

Parithy
Typewritten Text
Source : http://math.hws.edu/javanotes/c5/s6.html

	this and super
	5.6.1 The Special Variable this
	5.6.2 The Special Variable super
	5.6.3 Constructors in Subclasses

