
#include <iostream>

using namespace std;

class base {

public:

int i;

};

// derived1 inherits base.

class derived1 : public base {

public:

int j;

};

// derived2 inherits base.

class derived2 : public base {

public:

int k;

};

/* derived3 inherits both derived1 and derived2.

This means that there are two copies of base

in derived3! */

VIRTUAL BASE CLASSES IN CPP

Virtual Base Classes

An element of ambiguity can be introduced into a C++ program when multiple base classes are

inherited.

For example, consider this incorrect program:

// This program contains an error and will not compile.



cout << ob.i << " ";

cout << ob.j << " " << ob.k << " ";

cout << ob.sum;

return 0;

}

As the comments in the program indicate, both derived1 and derived2 inherit base. However,

derived3 inherits both derived1 and derived2. This means that there are two copies of base

present in an object of type derived3. Therefore, in an expression like

ob.i = 10;

which i is being referred to, the one in derived1 or the one in derived2? Because there are two

copies of base present in object ob, there are two ob.is! As you can see, the statement is

inherently ambiguous.

There are two ways to remedy the preceding program. The first is to apply the scope resolution

operator to i and manually select one i. For example, this version of the program does compile

and run as expected:

// This program uses explicit scope resolution to select i.

#include <iostream>

using namespace std;

class derived3 : public derived1, public derived2 {

public:

int sum;

};

int main()

derived3 ob;

ob.i = 10; // this is ambiguous, which i???

ob.j = 20;

ob.k = 30;

// i ambiguous here, too

ob.sum = ob.i + ob.j + ob.k;

// also ambiguous, which i?



};

/* derived3 inherits both derived1 and derived2.This means that there are two copies of base

in derived3! */

class derived3 : public derived1, public derived2 {

public:

int sum;

};

int main()

{

derived3 ob;

ob.derived1::i = 10; // scope resolved, use derived1's i

ob.j = 20;

ob.k = 30;

// scope resolved

ob.sum = ob.derived1::i + ob.j + ob.k;

// also resolved here

cout << ob.derived1::i << " ";

cout << ob.j << " " << ob.k << " ";

cout << ob.sum;

return 0;

}

class base {

public:

int i;

};

// derived1 inherits base.

class derived1 : public base {

public:

int j;

};

// derived2 inherits base.

class derived2 : public base {

public:

int k;



// This program uses virtual base classes.

#include <iostream>

using namespace std;

class base {

public:

int i;

};

// derived1 inherits base as virtual.

class derived1 : virtual public base {

public:

int j;

};

// derived2 inherits base as virtual.

class derived2 : virtual public base {

public:

int k;

};

/* derived3 inherits both derived1 and derived2.

This time, there is only one copy of base class. */

class derived3 : public derived1, public derived2 {

public:

int sum;

};

int main()

As you can see, because the :: was applied, the program has manually selected derived1's

version of base. However, this solution raises a deeper issue: What if only one copy of base is

actually required? Is there some way to prevent two copies from being included in derived3?

The answer, as you probably have guessed, is yes. This solution is achieved using virtual base

classes.

When two or more objects are derived from a common base class, you can prevent multiple

copies of the base class from being present in an object derived from those objects by declaring

the base class as virtual when it is inherited. You accomplish this by preceding the base class'

name with the keyword virtual when it is inherited. For example, here is another version of the

example program in which derived3 contains only one copy of base:



// unambiguous

cout << ob.i << " ";

cout << ob.j << " " << ob.k << " ";

cout << ob.sum;

return 0;

}

As you can see, the keyword virtual precedes the rest of the inherited class' specification. Now

that both derived1 and derived2 have inherited base as virtual, any multiple inheritance

involving them will cause only one copy of base to be present. Therefore, in derived3, there i

s

only one copy of base and ob.i = 10 is perfectly valid and unambiguous. One further point to

keep in mind: Even though both derived1 and derived2 specify base as virtual, base is stil

l

present in objects of either type. For example, the following sequence is perfectly valid:

// define a class of type derived1

derived1 myclass;

myclass.i = 88;

The only difference between a normal base class and a virtual one is what occurs when an

object inherits the base more than once. If virtual base classes are used, then only one base

class is present in the object. Otherwise, multiple copies will be found.

{

derived3 ob;

ob.i = 10; // now unambiguous

ob.j = 20;

ob.k = 30;

// unambiguous

ob.sum = ob.i + ob.j + ob.k;

Parithy
Typewritten Text
Source : http://elearningatria.files.wordpress.com/2013/10/cse-iii-object-oriented-programming-with-c-10cs36-notes.pdf




