USB ARCHITECTURE

The discussion above points to the need for an interconnection system that combines low cost, flexibility, and high data-transfer bandwidth. Also, I/O devices may be located at some distance from the computer to which they are connected. The requirement for high bandwidth would normally suggest a wide bus that carries 8, 16, or more bits in parallel. However, a large number of wires increases cost and complexity and is inconvenient to the user. Also, it is difficult to design a wide bus that carries data for a long distance because of the data skew problem discussed. The amount of skew increases with distance and limits the data that can be used.

A serial transmission format has been chosen for the USB because a serial bus satisfies the low-cost and flexibility requirements. Clock and data information are encoded together and transmitted as a single signal. Hence, there are no limitations on clock frequency or distance arising from data skew. Therefore, it is possible to provide a high data transfer bandwidth by using a high clock frequency. As pointed out earlier, the USB offers three bit rates, ranging from 1.5 to 480 megabits/s, to suit the needs of different I/O devices.

Figure 23 Universal Serial Bus tree structure.
To accommodate a large number of devices that can be added or removed at any time, the USB has the tree structure shown in figure 23. Each node of the tree has a device called a hub, which acts as an intermediate control point between the host and the I/O devices. At the root of the tree, a root hub connects the entire tree to the host computer. The leaves of the tree are the I/O devices being served (for example, keyboard, Internet connection, speaker, or digital TV), which are called functions in USB terminology. For consistency with the rest of the discussion in the book, we will refer to these devices as I/O devices.

The tree structure enables many devices to be connected while using only simple point-to-point serial links. Each hub has a number of ports where devices may be connected, including other hubs. In normal operation, a hub copies a message that it receives from its upstream connection to all its downstream ports. As a result, a message sent by the host computer is broadcast to all I/O devices, but only the addressed device will respond to that message. In this respect, the USB functions in the same way as the bus in figure 4.1. However, unlike the bus in figure 4.1, a message from an I/O device is sent only upstream towards the root of the tree and is not seen by other devices. Hence, the USB enables the host to communicate with the I/O devices, but it does not enable these devices to communicate with each other.

Note how the tree structure helps meet the USB’s design objectives. The tree makes it possible to connect a large number of devices to a computer through a few ports (the root hub). At the same time, each I/O device is connected through a serial point-to-point connection. This is an important consideration in facilitating the plug-and-play feature, as we will see shortly.

The USB operates strictly on the basis of polling. A device may send a message only in response to a poll message from the host. Hence, upstream messages do not encounter conflicts or interfere with each other, as no two devices can send messages at the same time. This restriction allows hubs to be simple, low-cost devices.
The mode of operation described above is observed for all devices operating at either low speed or full speed. However, one exception has been necessitated by the introduction of high-speed operation in USB version 2.0. Consider the situation in figure 24. Hub A is connected to the root hub by a high-speed link. This hub serves one high-speed device, C, and one low-speed device, D. Normally, a message to device D would be sent at low speed from the root hub. At 1.5 megabits/s, even a short message takes several tens of microseonds. For the duration of this message, no other data transfers can take place, thus reducing the effectiveness of the high-speed links and introducing unacceptable delays for high-speed devices. To mitigate this problem, the USB protocol requires that a message transmitted on a high-speed link is always transmitted at high speed, even when the ultimate receiver is a low-speed device. Hence, a message at low speed to device D. The latter transfer will take a long time, during which high-speed traffic to other nodes is allowed to continue. For example, the root hub may exchange several message with device C while the low-speed message is being sent from hub A to device D. During this period, the bus is said to be split between high-speed and low-speed traffic. The message to device D is preceded and followed by special commands to hub A to start and end the split-traffic mode of operation, respectively.

Source: http://elearningatria.files.wordpress.com/2013/10/cse-iv-computer-organization-10cs46-notes.pdf