A typical organization of a 64k x 1 dynamic memory chip is shown below:

The cells are organized in the form of a square array such that the high- and lower-order 8 bits of the 16-bit address constitute the row and column addresses of a cell, respectively. In order to reduce the number of pins needed for external connections, the row and column address are multiplexed on 8 pins. To access a cell, the row address is applied first. It is loaded into the row address latch in response to a single pulse on the Row Address Strobe (RAS) input. This selects a row of cells. Now, the column address is applied to the address pins and is loaded into the column address latch under the control of the Column Address Strobe (CAS) input and this address selects the appropriate sense/write circuit. If the R/W signal indicates a Read operation, the output of the selected circuit is transferred to the data output. Do. For a write operation, the data on the DI line is used to overwrite the cell selected.

It is important to note that the application of a row address causes all the cells on the corresponding row to be read and refreshed during both Read and Write operations. To ensure that the contents of a dynamic memory are maintained, each row of cells must
be addressed periodically, typically once every two milliseconds. A Refresh circuit performs this function. Some dynamic memory chips incorporate a refresh facility the chips themselves and hence they appear as static memories to the user! such chips are often referred to as Pseudostatic.

Another feature available on many dynamic memory chips is that once the row address is loaded, successive locations can be accessed by loading only column addresses. Such block transfers can be carried out typically at a rate that is double that for transfers involving random addresses. Such a feature is useful when memory access follow a regular pattern, for example, in a graphics terminal.

Because of their high density and low cost, dynamic memories are widely used in the main memory units of computers. Commercially available chips range in size from 1k to 4M bits or more, and are available in various organizations like 64k x 1, 16k x 4, 1MB x 1 etc.

DESIGN CONSIDERATION FOR MEMORY SYSTEMS:-

The choice of a RAM chip for a given application depends on several factors like speed, power dissipation, size of the chip, availability of block transfer feature etc.

Bipolar memories are generally used when very fast operation is the primary requirement. High power dissipation in bipolar circuits makes it difficult to realize high bit densities.

Dynamic MOS memory is the predominant technology used in the main memories of computer, because their high bit-density makes it possible to implement large memories economically.
Static MOS memory chips have higher densities and slightly longer access times compared to bipolar chips. They have lower densities than dynamic memories but are easier to use because they do not require refreshing.

Source: http://elearningatria.files.wordpress.com/2013/10/cse-iv-computer-organization-10cs46-notes.pdf