
The Object Metaphor in Python 
In the beginning of this text, we distinguished between functions and data: functions 
performed operations and data were operated upon. When we included function values 
among our data, we acknowledged that data too can have behavior. Functions could be 
operated upon like data, but could also be called to perform computation. 

In this text, objects will serve as our central programming metaphor for data values that 
also have behavior. Objects represent information, but also behave like the abstract 
concepts that they represent. The logic of how an object interacts with other objects is 
bundled along with the information that encodes the object's value. When an object is 
printed, it knows how to spell itself out as letters and numerals. If an object is composed 
of parts, it knows how to reveal those parts on demand. Objects are both information 
and processes, bundled together to represent the properties, interactions, and 
behaviors of complex things. 

The object metaphor is implemented in Python through specialized object syntax and 
associated terminology, which we can introduce by example. A date is a kind of simple 
object. 

>>> from datetime import date 

The name date is bound to a class. A class represents a kind of object. Individual dates 
are called instances of that class, and they can be constructed by calling the class as a 
function on arguments that characterize the instance. 

>>> today = date(2012, 9, 10) 

While today was constructed from primitive numbers, it behaves like a date. For 
instance, subtracting it from another date will give a time difference, which we can 
display as a line of text by calling str. 

>>> str(date(2012, 11, 30) - today) 
'81 days, 0:00:00' 

http://inst.eecs.berkeley.edu/~cs61A/book/chapters/objects.html#id3


Objects have attributes, which are named values that are part of the object. In Python, 
like many other programming languages, we use dot notation to designated an attribute 
of an object. 

<expression> . <name> 

Above, the <expression> evaluates to an object, and <name> is the name of an attribute 
for that object. 

Unlike the names that we have considered so far, these attribute names are not 
available in the general environment. Instead, attribute names are particular to the 
object instance preceding the dot. 

>>> today.year 
2012 

Objects also have methods, which are function-valued attributes. Metaphorically, we 
say that the object "knows" how to carry out those methods. By implementation, 
methods are functions that compute their results from both their arguments and their 
object. For example, The strftime method (a classic function name meant to evoke 
"string format of time") of today takes a single argument that specifies how to display a 
date (e.g., %A means that the day of the week should be spelled out in full). 

>>> today.strftime('%A, %B %d') 
'Monday, September 10' 

Computing the return value of strftime requires two inputs: the string that describes the 
format of the output and the date information bundled into today. Date-specific logic is 
applied within this method to yield this result. We never stated that the 10th of 
September, 2012, was a Monday, but knowing one's weekday is part of what it means 
to be a date. By bundling behavior and information together, this Python object offers us 
a convincing, self-contained abstraction of a date. 

Dot notation provides another form of combined expression in Python. Dot notation also 
has a well-defined evaluation procedure. However, developing a precise account of how 



dot notation is evaluated will have to wait until we introduce the full paradigm of object-
oriented programming over the next several sections. 

 

Parithy
Typewritten Text
Source : http://inst.eecs.berkeley.edu/~cs61A/book/chapters/objects.html#the-object-metaphor


	The Object Metaphor in Python



