
THE COMPREHENSIVE LAMP
GUIDE

PHP, the “P” in LAMP, is a recursive acronym for PHP: Hypertext Preprocessor.
It is the most widely used programming language for Web applications because of
its ease of learning, implementation and wide range of server support. This guide
aims to help you set up PHP on Apache for maximum performance.

PHP installation is similar to Apache’s installation process, with
GNU autoconf involved (./configure script). We’ve already discussed setting up the
optimisation flags for Apache (CFLAGS, CXXFLAGS) To install PHP 5.3.6 (the
latest available, as of this writing), you need (these requirements have been taken
from the INSTALL file in the tarball):

§ ANSI C Compiler (GCC on Linux)
§ Flex 2.5.4
§ Bison 1.28, 1.35 or 1.75
§ Web server
§ Module specific components (gd, pdf libs, etc)
The PHP source configuration is a bit tricky; extensions enabled by default (or by
specifying an option) are compiled statically. You need to take special care about
this. Statically compiling extensions means the extension will be embedded into
the PHP binary itself; you cannot disable it at will. If you can’t disable the

extension, it causes memory wastage if you aren’t using the extension in any of
your applications on the server.

Telling the PHP build system to build all extensions takes effort. You have to state
“shared” in the extension enabler switch: --with-EXT=shared or --enable-EXT=shared.
There are two switches, --enable-shared and --disable-static that can be passed
to ./configure, but they never worked for me — the build system always compiled
extensions statically.
Get the PHP source tarball from its official website, and also note the MD5 sum
shown on the download page, for file verification (similar to what we did
when installing MySQL, in July). Do not skip file verification; often, a proper
tarball wasn’t downloaded and my installation had problems like memory leaks,
etc.
Extract the archive to get the php-5.3.6 subdirectory. Before we begin configuring
the source, if you want to install some PECL extensions directly with PHP (if you
choose not to install PEAR/PECL with PHP), then you must place them in
the ext directory, and subsequently run theautoconf tool present in the source code
folder itself, with ./autoconf).

Configuring and building PHP
So here’s the table of options that the PHP ./configure accepts, and a short
description of what they do. This list isn’t exhaustive; run ./configure --help | less to
get a full list. Please note that you have to set the hardware-
dependent CFLAGS, CXXFLAGS for optimisation.
Another thing to remember is that if an option’s disable version is shown in the
exhaustive list, then its enable counterpart also exists and can be used. For
example, --disable-libxml is listed, but not --enable-libxml — yet it can be used.
Option Description

cache-file=FILE

Enables creation of ./configure cache; FILE is
usuallyconfig.cache. This improves
configuration speed if the configuration
process is broken due to the absence of some
library, etc.

--prefix=PREFIX

Directory prefix where PHP should be
installed, defaults to/usr/local; PHP binaries go
in <PREFIX>/bin

--with-apxs2=FILE Builds the Apache module libphp5.so. FILE is

http://www.php.net/downloads.php
http://www.opensourceforu.com/XXXXXX/

Option Description

the path to the apxstool (this is optional;
specify only when configure fails to
find apxsin $PATH.

--disable-cli
Disables the command-line version of PHP
and forces -–without-pear.

--enable-fpm Enables building of FPM SAPI executable.

--disable-cgi
Disables CGI version of PHP; use if you won’t
be using CGI (for FastCGI, we have FPM).

--with-config-file-
path=PREFIX/lib

Where the PHP interpreter should look
for php.ini. I got confused with this — it’s the
path to the directory where php.ini will be, not
including the filename! For example: --with-
config-file-path=/usr/local/etc.

--with-config-file-scan-
dir=PATH

Indicates which directory PHP scans to load
additional configuration files. Helps clean
up php.ini (separating it into different files).
Also, if you install extensions, you don’t have
to add their configuration to php.ini; you can
add separate configuration files to the scan
directory. I use --with-config-file-scan-
dir=/usr/local/etc/php.d

--enable/disable-libxml

Enables/disables libxml; it is enabled by
default. You shouldn’t disable this unless you
have a special reason to do so, because many
extensions depend on this.

--with-
openssl[=shared[,DIR]]

Compile PHP with OpenSSL support. You can
link the SSL extension with the OpenSSL
library found in /usr/include, or a special version
whose path you can provide as a parameter. If
you want to build the extension as a dynamic
library then: --with-openssl=shared

--with-
zlib[=shared[,DIR]]

Enables zlib extension (responsible for gzip
compression, etc.) Requires zlib >= 1.0.9.

Option Description

--enable-
bcmath[=shared]

Enables the bcmath extension, many packages
use this.

--with-
bz2[=shared[,DIR]] Enables the bzip2 extension.

--enable-
calendar[=shared]

Enables support for calendar conversion, some
packages may require this.

--with-
curl[=shared[,DIR]]

Enables the cURL extension. Requires the
library be installed; many Web apps require
this.

--enable-exif[=shared]
Enables the EXIF extension. A good idea if
you have image-processing applications.

--enable-ftp[=shared]

Enables the FTP extension. There’s no reason
to enable this unless you are installing a PHP
FTP client or want PHP scripts to connect to
FTP servers.

--with-
gd[=shared[,DIR]]

Enables GD support. Image-processing
packages require this. GD is bundled with the
source tarball, but you may configure the
extension to use the system version of
the gd library.

--with-jpeg-dir[=DIR]
Enables JPEG handling in GD.
Requires libjpeg to be installed.

--with-png-dir[=DIR]
Enables PNG support in GD;
needs libpng installed.

--with-xpm-dir[=DIR]
Enables XPM support in GD,
needs libXpm installed.

--with-freetype-
dir[=DIR]

Enables FreeType support in GD. FreeType is
used by many packages, especially those that
generate CAPTCHAs, etc.

--with-t1lib[=DIR]
Enables T1lib support, which is required by
some packages, in GD.

Option Description

--with-
gettext[=shared[,DIR]]

Enables gettext support, used for
internationalisation and localisation of
programs. Some packages may require this.

--with-
gmp[=shared,[,DIR]]

Enables GNU Math Processing library. This is
similar to the BCMath extension. Most
packages ask you to install either, but enabling
both is better for sanity.

--with-
mhash[=shared,[,DIR]]

Enables support for libmhash, which supports
hash algorithms including common ones like
MD5, SHA1, etc.

--enable-intl Enables internationalisation support.

--enable-json[=shared]

JSON support is enabled by default; this
option is not shown in the exhaustive list —
yet it can be built as a shared extension.

--enable-
mbstring[=shared]

Enables multi-byte string support, required for
multilingual websites.

--with-
mcrypt[=shared[,DIR]]

The mcrypt encryption library supports a lot of
encryption algorithms.

--with-
mysql[=shared,[,DIR]]

Enables MySQL support. DIR can be the path
to the source files of the mysql library
or mysqlnd; in the latter case, the native driver
bundled in the source will be used. Defaults
to /usr/local.

--with-mysql-
sock[=DIR]

Sets the default location of the MySQL socket
used by MySQL connect functions. If DIR is
not specified, default locations are searched.

--with-
mysqli[=shared[,FILE]]

Enables MySQLi support; this is an improved
version of the MySQL extension with OOP
interface. FILE is mysqlnd or path
tomysql_config binary.

--enable-embedded-
mysqli Enables embedded MySQL server support for

Option Description

MySQLi; it doesn’t work with mysqlnd.

--enable-pcntl[=shared]

Enables PCNTL (Process Control) extension,
which is rarely required. This is enabled only
for CLI and CGI (and FastCGI).

--enable-pdo[=shared]
PDO support is enabled by default, which is
not shown in the exhaustive list.

--with-pdo-
mysql[=shared[,DIR]]

Enables MySQL for PDO; DIR is mysqlnd or
path to MySQL library.

--with-pdo-
sqlite[=shared,DIR]]

SQLite 3 support for PDO, which is enabled
by default; option not shown in exhaustive
list. DIR is path to sqlite3 library which includes
files.

--with-
pspell[=shared[,DIR]]

Enables ASPELL spell-checker support; some
Web applications use this. Needs GNU Aspell
>= 0.5.0 installed on the system.

--enable-
session[=shared]

Session support, which is enabled by default;
option not shown in exhaustive list. There’s no
reason to build this extension as a shared
library unless you have a special reason to do
so.

--enable-
shmop[=shared]

Enables SHM (shared memory) operation
support.

--enable-
simplexml[=shared]

Enabled by default; though not shown in
exhaustive list.

--enable-soap[=shared]
Enables SOAP support, which some
applications may need.

--with-
sqlite[=shared[,DIR]]

SQLite 2 support, which is enabled by default,
but not shown in exhaustive list.

--enable-sqlite-utf8 Enables UTF-8 support for SQLite 2

--with-sqlite3[=shared] SQLite 3 support, which is enabled by default

Option Description

but not shown in exhaustive list.

--with-tidy[=shared]

The Tidy extension can clean up HTML
markup to conform to W3C standards. You
need tidy installed.

--with-
xmlrpc[=shared[,DIR]]

XMLRPC-EPI support; some applications may
use it, like blogs and CMSs.

--enable-
xmlreader[=shared]

XMLReader support, which is enabled by
default and is not shown in exhaustive list.

--enable-
xmlwriter[=shared]

XMLWriter support, enabled by default but
not shown in exhaustive list.

--enable-zip[=shared] Enables ZIP-file handling extension.

--with-pear=DIR
Installs PEAR in DIR; DIR defaults
to PREFIX/lib/php.

After you have completed configuration with ./configure and the options,
run make and make install to install PHP, keeping your fingers crossed that it builds
and installs successfully.

PHP configuration
Two configuration file candidates for php.ini are provided in the root of the source
tarball:php.ini-production and php.ini-development. Unless you will be testing and
developing on this system, choose the production version.
Copy php.ini-production to /usr/local/etc/php.ini or your /php.ini and start modifying it
with your favourite text editor. Here is a table of options that can be specified
in php.ini, along with a description of each:
Option Description

short_open_tag=<On|Off>

The short open tag <? instead of <?php.
If you run old applications, enable this;
this may cause confusion if other language
processors like XML, etc, are present.

output_buffering=<Off|Integer|On>

Maximum output data buffer size before
sending to client. Onenables infinite buffer
size (dangerous!). Best value: 4096.

Option Description

zlib.output_compression=<Off|On>
Enables/disables gzip compression of
output.

max_execution_time=<Integer>

Maximum script execution time (in
seconds), set to 0 for CLI. Should be set
after trial and error, though 30-60 seconds
should be good for standard applications.
A very large value is dangerous; a script
can hog resources for a long time.

max_input_time=<Integer>

Maximum time a script can spend parsing
request data. Default is unlimited (-1)
[hard-coded for CLI].

memory_limit=<size>

Maximum memory a script may consume;
size defaults to bytes, but modifiers
like M, G can be applied, like 128 M. Keep
it so that malicious scripts don’t hog all
available memory. 128-256 M is sufficient.

error_reporting

Sets the type of errors reported
to stdout, stderr or the error log. Default
value: E_ALL & ~E_NOTICE. Production
value: E_ALL & ~E_DEPRECATED.
Development value: E_ALL | ~E_STRICT

display_errors=<Off|On|stderr>

Displays errors
to stdout or stderr. Stderr affects only CLI
and CGI binaries.

include_path=<paths separated by
colon>

Colon-separated paths for PHP to search
for files named
ininclude, require, include_once or require_once.

file_uploads = <Off|On> Enables/disables file uploads.

upload_max_filesize=<size>
Maximum file-size for file upload; takes
modifiers like M, G, etc.

max_file_uploads=<Integer>
Maximum number of files that can be
uploaded in a single request.

Option Description

allow_url_include=<Off|On>

Inclusion of PHP files from URLs. This
can pose a security threat; malicious files
can be included from remote servers.

extension_dir=<path> Location to find PHP extensions.

extension=<filename>

Tells PHP to load the extension
named. filename takes full path to the
extension, else it will be sought
in extension_dir.

In addition to this configuration, to get maximum performance, you should install
an opcode cache like APC, XCache, eAccelerator, etc. Remember, PHP is an
interpreted language; source is compiled every time the script is run. Caching
compiled code saves CPU cycles.

You can also use Facebook’s Hiphop to convert PHP code to C++, which will help
you boost performance immensely — but that is beyond the scope of this article.

Configuring PHP with Apache
There are three methods to configure PHP on Apache: CGI (the worst
option), mod_php (better), and mod_fastcgi (the best). I’ll discuss
only mod_php and mod_fastcgi methods.

The mod_php method
This is the most commonly used method to configure PHP with Apache. It is
applicable only if you built the Apache SAPI for PHP (--with-apxs2). Add these
lines to httpd.conf to enable PHP support with mod_php:
LoadModule php_module modules/libphp5.so
AddHandler php5-script .php
AddType text/html .php
If you have read the PHP documentation for installation, then you might know that
PHP recommends the use of application/x-httpd-php for PHP scripts — but that never
worked properly for me; hence, I won’t advise it.

The mod_fastcgi method
With PHP-FPM, FastCGI usage has been increasing ever since, because of its
advantages over CGI and mod_php. FastCGI’s advantage over others is that the

PHP processing stack is separated from the server — there are some processes
running separately, independent of the Web server on the machine where PHP is
being used itself, or some remote destination. Because of this, opcode caches are
able to share data across multiple processes, and their data is not destroyed when
you change the Web server configuration and restart (or reload) it. Also, you can
have dedicated PHP processing machines on the network to enable load sharing —
very useful if you have a heavily trafficked site.
Again, there are two methods to use PHP with mod_fastcgi; the older uses spawn-
fcgi or something similar, which sets up a PHP interpreter stack on a TCP port or a
UNIX socket. The newer method uses PHP-FPM. mod_fastcgi is not provided with
the default Apache installation — you have to download and install as per
the INSTALL file in the tarball. Sometimes, the module is not automatically
installed to the Apache modules directory; you need to copy it there from/.libs/.
After you have installed the module, to enable it in Apache, add (or uncomment)
this directive:
LoadModule fastcgi_module modules/mod_fastcgi.so
The older method using spawn-fcgi
Run the following spawn-fcgi command (spawn-fcgi is a part of the lighttpd project,
but is available as a separate package in many distributions):
spawn-fcgi -f /usr/local/bin/php-cgi -s /tmp/php.sock -u apache -g apache -C 10
This will launch the PHP interpreter stack (consisting of 10 processes and one
manager process) that will listen for requests at /tmp/php.sock. You can also make
the stack listen on a TCP port using -p (port) and -a (address) option instead of -s.
These are mutually exclusive.
Add these lines to the Apache configuration to enable PHP:

AddHandler php-fcgi .php
FastCgiExternalServer /var/www/cgi-bin/php.external -socket /tmp/php.sock -pass-header
Authorisation
Action php-cgi /cgi-bin/php.external
The above lines are the same if you use FPM — it is just that you may have to
change the socket path if you specify a different path in FPM configuration.

You need to configure FastCgiExternalServer‘s path into a cgi-bin directory, or you
may have to set the ExecCGI option for PHP scripts if php.external is not in a cgi-bin.
There are various ways to set up php-fastcgi on Apache, so use the one that works
for you. Use Google to search for more information.

FPM configuration

http://www.fastcgi.com/
http://www.lighttpd.net/

A sample FPM configuration may be placed in /usr/local/etc or <PREFIX>/etc. The
default location seems to be /etc/php-fpm.conf (as per my installation, on Gentoo),
but that may differ across distributions. Look for the sample configuration
in /etc and /usr/local/etc or<PREFIX>/etc; copy it to php-fpm.conf in the same directory,
and start modifying it. The configuration file is well documented, so I’ll describe
options specific to the PHP pool required to get PHP running, not the others.
A pool configuration section starts with the pool name in square brackets:

[www] ; Pool name = www
To make a pool listen on a socket or TCP port, you need to use the listen option:

listen = <path-to-socket|address:port>
Also note the options listen.owner, listen.group and listen.mode. If you make a mistake
while configuring these, you may have a setup that doesn’t work. These should be
configured so that the user and group Apache is running under should be able to
read and write to the socket. The options user and group in the FPM configuration
specify the user and group PHP runs as. This means that the user and group
specified there should have read-write permissions to the directories/files they may
be processing.
Other options you need to configure
are pm, pm.max_children, pm.start_servers,pm.min_spare_servers and pm.max_spare_servers.
The pm=dynamic setting is best — it will launch PHP processes when required (of
course, min_spare_servers number of processes will always be running).
Other options depend on your server’s capacity. Read the documentation provided
in the file itself to configure them.

Parithy
Typewritten Text
Source : http://www.opensourceforu.com/2011/09/comprehensive-lamp-guide-part-3-php/

	THE COMPREHENSIVE LAMP GUIDE
	Configuring and building PHP
	PHP configuration
	Configuring PHP with Apache
	The mod_php method
	The mod_fastcgi method
	The older method using spawn-fcgi

	FPM configuration

