
SUBCLASSES IN JAVA
Every class in Java is built from another Java class. The new class is called a subclass of the other
class from which it is built. A subclass inherits all the instance methods from its superclass. The
notion of being a subclass is transitive: If class A is a subclass of B, and B is a subclass of C, then A is
also considered a subclass of C. And if C is a subclass of D, then so is A a subclass of D.

The subclass concept has important implications in Java, and we explore the concept in this chapter.

Fundamentals of subclasses
The GOval class is a good example of a subclass: It is a subclass of the GObject class.
The GObject class represents abstract objects that might appear inside a graphics window, and
a GOval object is a particular shape that will appear.

Since all such objects will have a position in the window, GObject defines several methods
regarding the object's position, including getX, getY, and move. The GOval class, as a subclass
of GObject, inherits all of these methods, as well as adding some of its own, like setFilled.
The GLine class, also a subclass of GObject, inherits GObject's methods too, and it adds different
methods, like setStartPoint and setEndPoint for moving the line's endpoints. (The GLine class
does not have a method called setFilled.)

Subclasses are meant to be more specialized versions of the superclass — hence the word subclass,
similar to the word subset from mathematics. Ovals are a subset of all shapes, so GOval is defined as
a subclass of GObject. Being more specialized, it may make sense for the subclass to be perform
specialized methods that don't apply to the more general superclass. The method setFilled doesn't
make sense for GObject, because for some shapes (such as lines), the notion of being filled is
senseless. But for ovals, it does make sense, and so GOval defines a setFilled method.

Often we say that the new class extends the other class, since it contains all of the instance methods
of the superclass, plus possibly more that are defined just for the subclass. In fact, our programs have
included exactly this word extends: We've started the program with words
like public class…extends GraphicsProgram.)

If we wanted a GCircle class for representing circles, then a good designer would define it as a
subclass of GOval, since circles are simply a special type of oval. This class might add some
additional methods, such as getRadius, that don't make as much sense in the context of ovals. (The
designers of the acm.graphics package didn't feel that circles were sufficiently interesting to
include a special class for them, though.) By the way, GCircle would automatically be a subclass
of GObject, too, since every circle is an oval, and every oval is a shape.

Much like a family tree, classes can be arranged into a diagram called an inheritance hierarchy,
showing they relate to each other. Figure 11.1 illustrates an inheritance hierarchy for several classes
in the acm.graphics package, plus our hypothetical GCircle class.

Figure 11.1: An inheritance hierarchy. (The italicized GCircle is not

in acm.graphics.)

The Object class
This chapter began: Every class in Java is built from another Java class. This leads to an obvious
question: Does this mean that there are infinitely many classes, each extending the next one?

Actually, the sentence wasn't entirely true. There is one special class which does not extend any other
class: Object, found in the java.lang package. When defining a class that doesn't seem sensibly to
extend any other class (as often happens), a developer would define it to extend the Object class
alone. The GObject class is an example of a class whose only superclass is Object.

The Object class does include a few methods. Because Object is the ultimate parent of all other
classes, all other classes inherit these methods. In this book, we'll examine two of these
methods, equals and toString.

boolean equals(Object other)

Returns true if this object is identical to other. By default, the two objects are regarded as
equal only if they are the same object. For some classes (notably String), equalscompares
the data within the object to check whether the objects represent the same concept, even if
they are two separate objects.

String toString()

Returns a string representation of this object's value. By default, this string is basically
nonsense, but for some subclasses the method returns a meaningful string representation.

http://www.toves.org/books/java/ch11-subclass/index.html#fig1

These instance methods can be applied to any object in a program, because every object is a member
of some class, and that class must lie somewhere below Object class in the inheritance hierarchy, so
it will inherit the Object instance methods. Thus, writing ball.toString() would be legal, no
matter what sort of object ball references.

Parithy
Typewritten Text
Source : http://www.toves.org/books/java/ch11-subclass/index.html

	SUBCLASSES IN JAVA
	Fundamentals of subclasses
	The Object class

