
String Matching Algorithms 

    

    1. Naïve String Matching   

    The naïve approach simply test all the possible placement of Pattern P[1 . . m] relative to text T[1 . 

. n]. Specifically, we try shift s = 0, 1, . . . , n - m, successively and for each shift, s. Compare T[s +1 

. . s + m] to 

P[1 . . m]. 
 
          NAÏVE_STRING_MATCHER (T, P)  
          1. n ← length [T]  
          2. m ← length [P]  
          3. for s ← 0 to n - m do  
          4. if P[1 . . m] = T[s +1 . . s + m]  
          5.     then return valid shift s  
  

The naïve string-matching procedure can be interpreted graphically as a sliding a pattern P[1 . . m] 

over the text T[1 . . n] and noting for which shift all of the characters in the pattern match the 

corresponding characters in the text.  

In other to analysis the time of naïve matching, we would l ike to implement above algorithm to 

understand the test involves in line 4. 

Note that in this implementation, we use notation P[1 . . j] to denote the substring of P from index i to 

index j. That is, P[1 . . j] = P[i] P[i +1] . . . P[j].  
 
          NAÏVE_STRING_MATCHER (T, P)  
          1. n ← length [T]  
          2. m ← length [P]  
          3. for s ← 0 to n-m do  
          4.   j ← 1  
          5.   while j ≤ m and T[s + j] = P[j] do  
          6.     j ← j +1  
          7.   If j > m then  
          8.     return valid shift s  
          9. return no valid shift exist // i.e., there is no substring of T matching P.  
  

Analysis  

Referring to implementation of naïve matcher, we see that the for -loop in line 3 is executed at most n 

- m +1 times, and the while-loop in line 5 is executed at most m times. Therefore, the running time of 

the algorithm is O((n - m +1)m), which is clearly O(nm). Hence, in the worst case, when the length of 

the pattern, m are roughly equal, this algorithm runs in the  quadratic time. 



One worst case is that text, T, has n number of A's and the pattern, P, has (m -1) number of A's 

followed by a single B. 

2. Knuth-Morris-Pratt Algorithm 

    Knuth, Morris and Pratt discovered first linear time string -matching algorithm by following a tight 

analysis of the naïve algorithm. Knuth-Morris-Pratt algorithm keeps the information that naïve 

approach wasted gathered during the scan of the text. By avoiding this waste of information, it 

achieves a running time of O(n + m), which is optimal in the worst case sense. That is, in the worst 

case Knuth-Morris-Pratt algorithm we have to examine all the characters in the text and pattern at 

least once. 

The Failure Function 

    The KMP algorithm preprocess the pattern P by computing a failure function  f that indicates the 

largest possible shift s using previously performed comparisons. Specifically, the failure function  f(j) 

is defined as the length of the longest prefix of P that is a suffix of P[i . . j].  
 
          Input: Pattern with m characters  
          Output: Failure function f for P[i . . j]  
          KNUTH-MORRIS-PRATT FAILURE (P)  
         1. i ← 1  
         2. j ← 0  

         3. f(0) ← 0  

         4. while i < m do  
         5.   if P[j] = P[i]  

         6.      f(i) ← j +1  

         7.      i ← i +1  
         8.      j ← j + 1  
         9.   else if j > 0  

         10.      j ← f(j - 1)  

         11.   else  

         12.      f(i) ← 0  

         13.      i ← i +1  
  

Note that the failure function f for P, which maps j to the length of the longest prefix of P that is a 

suffix of P[1 . . j], encodes repeated substrings inside the pattern itself.  

As an example, consider the pattern P = a b a c a b. The failure function, f(j), using above algorithm 

is 

 j   0     1      2     3     4     5 

 P[j]   a      b     a     c     a      b 

 f(j)   0     0      1    0     1      2 

By observing the above mapping we can see that the longest prefix of pattern, P, is ″a b″ which is also a suffix of 
pattern P. 
Consider an attempt to match at position i, that is when the pattern P[0 . . m -1] is aligned with text P[i . . i + m -1]. 

          T :   a   b   a   c   a   a   b   a   c   c  

          P :   a   b   a   c   a   b 



Assume that the first mismatch occurs between characters T[ i+ j] and P[j] for 0 < j < m. In the above 

example, the first mismatch is T[5] = a and P[5] = b.   

           Then, T[i . . i + j -1] = P[0 . . j -1] = u  

           That is, T[ 0 . . 4] = P[0 . . 4] = u, in the example [u = a b a c a] and   

           T[i + j] ≠ P[j] i.e., T[5] ≠ P[5], In the example [T[5] = a ≠ b = P[5]].  

When shifting, it is reasonable to expect that a prefix v of the pattern matches some suffix of the 

portion u of the text. In our example, u = a b a c a and v = a b a c a, therefore, 'a' a prefix of v 

matches with 'a' a suffix of u. Let l(j) be the length of the longest string P[0 . . j -1] of pattern that 

matches with text followed by a character c different from P[j]. Then after a shift, the comparisons 

can resume between characters T[i + j] and P[l(j)], i.e., T(5) and P(1).  

          T :   a   b   a   c   a   a   b   a   c   c  

          P :                       a   b   a   c   a   b 

Note that no comparison between T[4] and P[1] needed here.  

 
          Input: Strings T[0 . . n] and P[0 . . m]  
          Output: Starting index of substring of T matching P  
          KNUTH-MORRIS-PRATT (T, P)  

          1.  f ← compute failure function of Pattern P  

          2. i ← 0  
          3. j ← 0  
          4. while i < length[T] do  
          5.     if j ← m-1 then  
          6.      return i - m + 1 // we have a match  
          7.      i ← i + 1  
          8.      j ← j + 1  
          9.     else if j > 0  

          10.      j ←  f(j - 1)  

          11.     else  
          12.      i ← i + 1  
  

Analysis  

The running time of Knuth-Morris-Pratt algorithm is proportional to the time needed to read the 

characters in text and pattern. In other words, the worst -case running time of the algorithm is O(m + 

n) and it requires O(m) extra space. It is important to note that these quantities are independent of 

the size of the underlying alphabet. 

3. Boyer-Moore Algorithm  

The Boyer-Moore algorithm is consider the most efficient string -matching algorithm in usual 

applications, for example, in text editors and commands substitutions.  The reason is that it woks the 

fastest when the alphabet is moderately sized and the pattern is relatively long.  

The algorithm scans the characters of the pattern from right to left beginning with the rightmost 



character. During the testing of a possible placement of pattern P against text T, a mismatch of text 

character T[i] = c with the corresponding pattern character P[j] is handled as follows: If c is not 

contained anywhere in P, then shift the pattern P completely past T[i]. Otherwise, shift P until a n 

occurrence of character c in P gets aligned with T[i].  

This technique likely to avoid lots of needless comparisons by significantly shifting pattern relative to 

text. 

Last Function 

    We define a function last(c) that takes a character c from the alphabet and specifies how far may 

shift the pattern P if a character equal to c is found in the text that does not match the pattern.  

 

For example consider : 

                 0   1   2   3   4   5   6   7   8   9 

          T :   a   b   a   c   a   a   b   a   c   c 

 

                 0   1   2   3   4   5 

          P :   a   b   a   c   a   b  

last(a) is the index of the last (rightmost) occurrence of ′a′ in P, which is 4.   

last(c) is the index of the last occurrence of c in P, which is 3   

′d′ does not exist in the pattern there we have last (d) = -1. 

c a b c d 

last(c) 4   3 -1 

Now, for 'b' notice 
 
          T :   a   b   a   c   a   a   b   a   c   c 
          P :   a   b   a   c   a   b  
 
Therefore, last(b) is the index of last occurrence of b in P, which is 5. 

The complete last(c) function 

c a b c d 



last(c) 4 5 3 -1 

Boyer-Moore algorithm 

 
            Input: Text with n characters and Pattern with m characters  
            Output: Index of the first substring of T matching P  
            BOYER_MOORE_MATCHER (T, P)  
            1. Compute function last  
            2. i ← m-1  
            3. j ← m-1  
            4. Repeat  
            5.    If P[j] = T[i] then  
            6.      if j=0 then  
            7.        return i // we have a match  
            10.     else  
            11.        i ← i -1  
            12.        j ← j -1  
            13.    else  
            14.      i ← i + m - Min(j, 1 + last[T[i]])  
            15.      j ← m -1  
            16. until i > n -1  
            17. Return ″no match″  
  

Analysis  

    The computation of the last function takes O(m+|∑|) time and actual search takes O(mn) time. 

Therefore the worst case running time of Boyer-Moore algorithm is O(nm + |∑|). Implies that the 

worst-case running time is quadratic, in case of n = m, the same as the naïve algorithm.   

        (i) Boyer-Moore algorithm is extremely fast on large alphabet (relative to the length of the 

pattern).  

        (ii) The payoff is not as for binary strings or for very short patterns.   

        (ii i) For binary strings Knuth-Morris-Pratt algorithm is recommended.  

        (iv) For the very shortest patterns, the naïve algorithm may be better.  

 

 

 

Source: 

http://www.learnalgorithms.in/# 


